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Outline

Gauging is usually done microscopically in field theories or
lattice models to give a dual (gauged) theory.
We give a macroscopic/categorical understanding.
The following important data are needed for gauging:

The symmetry assignment of the theory to be gauged
a monoidal functor
The precise way to perform gauging: which symmetry
defects are to be condensed and how
a module category or a condensation algebra of symmetry defects

The remaining things are just computing centers!
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Symmetry assignment

The traditional way of assigning a symmetry G to a quantum
system V is by specifying a group representation:

ρ : G → GL(V) ⊂ End(V).

G is an abstract (indexing) group.
End(V) is all linear operators on V.
ρ is a group homomorphism a map that preserves multiplication.

It is important to separate the abstract multiplication rule from
concrete operators. Even if G and V are the same, different ρ
should be considered as different physical symmetries.

To proceed, we need to abandon the idea that
G acts externally on V.
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Symmetry assignment

Generalized symmetry are formed by topological operators.
If we collect all the possible topological operators in a
physical system in n+1D, the corresponding mathematical
description is a fusion n-category A.
The abstract (indexing) generalized symmetry is also a
fusion n-category T .

Definition
A symmetry assignment is a higher linear monoidal functor

ϕ : T → A.
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Center functor

The center functor plays a central role in gauging.
A useful physical picture is to think center computes bulk.

Center of a fusion n-category C: Z(C) = FunC|C(C, C).
Center of C-D-bimodule M: ZC|D(M) = FunC|D(M,M).

Center of ϕ : T → A: Z(ϕ) := ZT |A(ϕA), where ϕA is the
T -A-bimodule A with left action given by ϕ.

Z(ϕ)

AϕT

Z(A)Z(T )

Center depicted as bulk.
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Physical meaning of Z(ϕ)

Informally speaking, Z(ϕ) is the centralizer or commutant of
ϕ(T ) in A:

Z(ϕ) ∼ {X ∈ A| X ⊗ ϕ(s) ∼= ϕ(s)⊗ X, ∀s ∈ T }.

Z(ϕ) is the topological operators that are invariant under the
action of ϕ(T ), recall that a unitary symmetry acts on operators by conjugation UgXU†

g ,

which may be called the charge/representation category.

Example: for the forgetful functor ϕ : nVecG → nVec,
Z(ϕ) = nRepG.
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Zipping

The symmetry assignment ϕ : T → A is equivalent to the
“sandwich” picture.

L. Kong and H. Zheng, The center functor is fully faithful, Advances in Mathematics 339 (2018) 749 [1507.00503]

L. Kong and H. Zheng, Categories of quantum liquids II, 2107.03858

D.S. Freed, G.W. Moore and C. Teleman, Topological symmetry in quantum field theory, 2209.07471.

One direction, we call Zipping:
Computing the center gives a sandwich T ⊠

Z(T )
Z(ϕ) ∼= A.

Z(ϕ)

AϕT

Z(A)

Z(T )
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Unzipping

The other direction, we call Unzipping:
Sandwich T ⊠

Z(T )
C ∼= A implies a natural symmetry assignment:

ηT ,C : T → T ⊠
Z(T )

C

s 7→ s ⊠
Z(T )

1C

The center of this symmetry assignment is exactly C,

C ∼= Z(ηT ,C).

C

T

Z(T ⊠
Z(T )

C)
Z(T )
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Abstract gauging

The ways of gauging should be first specified for the abstract
symmetry T :

Definition
An abstract gauging of the abstract symmetry T is an
indecomposable right T -module K.

Equivalently, an abstract gauging can be specified by an
algebra K in T such that LModK(T ) ∼= K. The symmetry
defects contained in the algebra K are to be “summed over” or
“condensed”.
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Abstract gauging

Definition
An abstract gauging of the abstract symmetry T is an
indecomposable right T -module K.

Denote by T ∨
K := ZnVec|T (K) = FunnVec|T (K,K) the center of K,

called the gauge symmetry or dual symmetry (of T with respect
to K).

T ∨
K is Morita equivalent to T by definition.
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Abstract gauging

Definition
An abstract gauging of the abstract symmetry T is an
indecomposable right T -module K.

If nVec is a T -module, T is a local fusion n-category (free of
’t Hooft anomaly) and choosing K = nVec corresponds to the
ordinary gauging, i.e., “summing over” all possible symmetry
defects.

In general, K can be larger and corresponds to a partial
gauging where only a subset of symmetry defects, instead of
all, are “summed over”.
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Gauging prescription

Definition
Given a theory A, we need to specify its symmetry ϕ : T → A,
and an abstract gauging K of T , and then the gauged theory is
Aϕ

K := T ∨
K ⊠

Z(T )
Z(ϕ) ∼= ZnVec|A(K ⊠

T
ϕA).

Z(ϕ)T ∨
K

ηT ∨
K ,Z(ϕ)

Aϕ
K

AϕTK

Z(A)

Z(T )

By Unzipping, T ∨
K is a

natural symmetry of the
gauged theory Aϕ

K, with the
same charge category Z(ϕ)
as the original theory.
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Gauging is reversible (Morita equivalence)

T ∨
K

ηT ∨
K ,Z(ϕ)

Aϕ
K

ηT ∨
K ,Z(ϕ)

T ∨
K

AϕTK

AϕTK∨

Z(A)

Z(ϕ)

Z(ηT ∨
K ,Z(ϕ))

Z(ϕ)

T ∨
K

AϕTK

AϕTK∨

Z(A)Z(T )
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Ordinary gauge theory

nRepGnRepG

ZnVec|nVec(nRepG)

nVecϕnVecGnVec

Z(nVecG)

ϕ : nVecG → nVec is the
forgetful functor. The
gauged theory is the
ordinary G-gauge theory.
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Dijkgraaf-Witten gauge theory

nRepGnRepG

ZnVec|nVec(Σ(n − 1)Vecωn+1
G )

nVec
ϕωn+1

nVecGnVec

Z(nVecG)

ϕωn+1 : nVecG → nVec is
twisted by an (n+1)-cocycle
ωn+1, describing a SPT
phase. The gauged theory
is the Dijkgraaf-Witten
G-gauge theory.



Symmetry assignment Center functor Gauging prescription Examples

Gauging 2+1D SET phases

ΣMG2RepG

Σ(M×
G )

G

ΣM
ϕ

2VecG2Vec

Z(2VecG)

Take a UMTC M with a
G-action. It can be gauged
iff there exists a G-crossed
braided extension M×

G , and
in the 2-categorical
language, iff there exists a
monoidal functor
ϕ : 2VecG → ΣM.

ENO arXiv:0909.3140, BBCW arXiv:1410.4540

MG, the equivariantization
of M, is a UMTC over RepG;
(M×

G )
G is a minimal modular

extension of MG.
LKW arXiv:1602.05936,1602.05946
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Other Examples

Partial gauging: take a subgroup L ⊂ G. The abstract
gauging K = LMod(n−1)VecL(nVecG) is equivalent to partially
gauging the subgroup L.
Higher gauging: we allow Z(A) to be nontrivial, in which
case gauging A is a higher gauging inside a nontrivial bulk.
“Lower” gauging: we can as well gauge the bulk theory
ΣZ(A). A typical example is gauging fermion number
parity.
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Conclusion and Outlook

Symmetry assignment ϕ : T → A is equivalent to
sandwich T ⊠

Z(T )
Z(ϕ) ∼= A.

Abstract gauging K is a right T -module.
Gauged theory is the center of right A-module K ⊠

T
ϕA and

thus Morita equivalent to A.
Our framework covers all known variants of gauging, and
may be used to discover unknown ones

Thanks for attention!
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