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Topological Phases of Matter

Quantum phases of matter (H =
∑

i Hi,V = ⊗iVi) with
local structures and a finite energy gap.
Symmetry UgHU−1

g = H, g ∈ GH.
Used to be considered solved by Landau symmetry
breaking theory.
Exotic phases with “topological” nature discovered.
Fractional quantum Hall: fractional charges, fractional
statistics, protected gapless edge states.
→ Intrinsic topological order, not requiring any symmetry

X.-G. Wen, Int. J. Mod. Phys. B 4, 239 (1990); X.-G. Wen and Q. Niu, Phys. Rev. B 41, 9377 (1990)

Topological insulator: symmetry protected gapless
(conducting) edge states.
→ Symmetry protected topological (SPT) phases, no
intrinsic topological order

X. Chen, Z.-C. Gu, Z.-X. Liu, and X.-G Wen, Phys. Rev. B 87, 155114 (2013), Science 338, 1604 (2012)
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Topological Phases in Different Dimensions

1+1D 2+1D 3+1D

Symmetry breaking X X X

SPT X X X

Topological order × X X

??? × × X

Complete classification in 1+1D
Symmetry breaking phases G ⊂ GH

GH is the symmetry group of the Hamiltonian
G is the symmetry group of the ground states
1+1D Topological phases
G ⊂ GH, pRep(G) (or H2(G,U(1)))
Symmetry breaking, SPTX. Chen, Z.-C. Gu, and X.-G. Wen, Phys. Rev. B 83, 035107 (2011)

N. Schuch, D. Perez-Garcia, and I. Cirac, Phys. Rev. B 84, 165139 (2011)

But in 2+1D need to combine symmetry with topological order.
Tian Lan Topological Phases with Symmetry



Framework

2+1D Topological Phases

G ⊂ GH, E ⊂ C ⊂M, c

G ⊂ GH — Symmetry breaking
E , C,M— unitary braided fusion categories (UBFC)
fusion and braiding (statistics) of quasiparticles (anyon model)
E local excitations carrying group representations

symmetric fusion category, Rep(G) or sRep(Gf )

C E plus “anyons”, all bulk excitations
UBFC with Müger center E , UMTC/E

M C plus “gauged symmetry defects”, excitations in the “gauged”
phase
minimal modular extension of C
captures some information of “invertible” stack to trivial phases

c — central charge, to address E8 states that are invisible toM.
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Local Excitations E

The “non-exotic” excitations
that can be created by local operators.
Carry symmetry charges/representations.
Boson systems E = Rep(G), fusion is tensor product of
representations, braiding is all trivial.
Fermion systems E = sRep(Gf ), whose fusion is the same
as Rep(G), but braiding is different. The phase of braiding
two fermions is changed to −1.
E uniquely determines the symmetry group G.

Tannaka-Krein Duaility; P. Deligne, Catégories tensorielles, Mosc. Math. J. 2 (2002), no. 2, 227–248

2+1D Topological Phases

G ⊂ GH, E ⊂ C ⊂M, c
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All Bulk Excitations C

Local excitations E + “exotic” ones (fractional/non-Abelian
anyons)
Braiding non-degeneracy:
“Exotic” excitations must be detectable remotely.
The excitations with trivial mutual braiding statistics with all
excitations in C must be the local ones.
Müger center of C coincide with E . UMTC over E , UMTC/E
C has anomaly if not satisfied, requiring a 3+1D topological ordered bulk.

Extreme case E = C, c = 0: SPT
SPT has non-trivial classification.
Need more information than E ⊂ C.

2+1D Topological Phases

G ⊂ GH, E ⊂ C ⊂M, c
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Gauging/Modular ExtensionM

Promote extrinsic symmetry defects to dynamical
excitations, “gauge the symmetry”

M. Levin and Z.-C. Gu, Phys. Rev. B 86, 115109 (2012)

→ bosonic topological order with no symmetry
A larger anyon model (UMTC) that contains all bulk
excitations C plus gauged symmetry defects
= minimal modular extension of C
The gauged symmetry defects can detect E via braidings.
“Minimal” in the sense that gauged symmetry defects must
have non-trivial mutual statistics with at least one local
excitation in E . The centralizer of E inM is C.

2+1D Topological Phases

G ⊂ GH, E ⊂ C ⊂M, c
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Gauging/Modular ExtensionM

UMTCM captures most information and fixes the chiral
central charge c modulo 8.
Only ambiguity left is invertible states with no anyons and
central charge in 8Z.
They are generated by the E8 state, fixed by the chiral
central charge c.
Minimal modules extension may not exist, in which case C
has symmetry anomaly, requiring a 3+1D SPT bulk.

2+1D Topological Phases

G ⊂ GH, E ⊂ C ⊂M, c
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Examples

Assume no symmetry breaking in the following.

Toric code model with no symmetry (Z2 gauge theory)

E = {1}, C =M =Mtc = {1, e,m, f}, c = 0.

Zf
2 invertible fermionic topological orders

E = C = sRep(Zf
2) = {1, f}.

f ⊗ f = 1, sf = 1/2

16-fold way 16M with central charge c =
n
2

.

8 Ising type {1, f , σ}, dσ =
√

2. p + ip superconductors. σ “vortex”, flux of gauged Zf
2.

8 Abelian: 4 Z2 × Z2 fusion, 4 Z4 fusion. Integer quantum hall states.
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Examples

Z2 SPT

E = C = Rep(Z2) = {1+, 1−}, 1− ⊗ 1− = 1+.

M =Mtc = {1 ∼ 1+, e ∼ 1−,m, f}.

m, f = m⊗ 1−, flux of gauged Z2, trivial phase.

OR

M =Mds = {1 ∼ 1+, s, s̄, ss̄ ∼ 1−}.

s, s̄ = s⊗ 1− , flux of gauged Z2, nontrivial SPT

SPT is reflected in the “symmetry defects” or “flux of the gauged theory”.
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Examples

Toric code with Z2 symmetry
(no interaction between symmetry and topological order)

E = Rep(Z2) = {1+, 1−}.

C = Rep(Z2)�Mtc = {1+, 1−} × {1, e,m, f}.

M =Mtc �Mtc OR M =Mds �Mtc

Toric code with e,m exchange Z2 symmetry

E = Rep(Z2) = {1+, 1−}.

C = {1+, 1−, f+, f−, τ ∼ e⊕ m}.

M∼ Ising� Ising, two versions.

TwoM differ by the stacking of non-trivial Z2 SPT phase. A general theorem
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Table of Topological Phases

List C in terms of anyon spectrum:
Zf

2 symmetry “fermion phases with no symmetry”

NF
c d1, d2, · · · s1, s2, · · ·

2F
0 1, 1 0, 1

2

4F
0 1, 1, 1, 1 0, 1

2 ,
1
4 ,−

1
4

4F
1/5 1, 1, ζ1

3 , ζ
1
3 0, 1

2 ,
1

10 ,−
2
5

4F
−1/5 1, 1, ζ1

3 , ζ
1
3 0, 1

2 ,−
1

10 ,
2
5

4F
1/4 1, 1, ζ2

6 , ζ
2
6 0, 1

2 ,
1
4 ,−

1
4

6F
0 1, 1, 1, 1, 1, 1 0, 1

2 ,
1
6 ,−

1
3 ,

1
6 ,−

1
3

6F
0 1, 1, 1, 1, 1, 1 0, 1

2 ,−
1
6 ,

1
3 ,−

1
6 ,

1
3

6F
0 1, 1, 1, 1, ζ1

2 , ζ
1
2 0, 1

2 , 0, 1
2 ,

1
16 ,−

7
16

6F
0 1, 1, 1, 1, ζ1

2 , ζ
1
2 0, 1

2 , 0, 1
2 ,−

1
16 ,

7
16

6F
0 1, 1, 1, 1, ζ1

2 , ζ
1
2 0, 1

2 , 0, 1
2 ,

3
16 ,−

5
16

6F
0 1, 1, 1, 1, ζ1

2 , ζ
1
2 0, 1

2 , 0, 1
2 ,−

3
16 ,

5
16

6F
1/7 1, 1, ζ1

5 , ζ
1
5 , ζ

2
5 , ζ

2
5 0, 1

2 ,
5

14 ,−
1
7 ,−

3
14 ,

2
7

6F
−1/7 1, 1, ζ1

5 , ζ
1
5 , ζ

2
5 , ζ

2
5 0, 1

2 ,−
5

14 ,
1
7 ,

3
14 ,−

2
7

6F
0 1, 1, ζ2

10, ζ
2
10, ζ

4
10, ζ

4
10 0, 1

2 ,
1
3 ,−

1
6 , 0, 1

2
6F

0 1, 1, ζ2
10, ζ

2
10, ζ

4
10, ζ

4
10 0, 1

2 ,−
1
3 ,

1
6 , 0, 1

2

ζm
n =

sin[π(m+1)/(n+2)]
sin[π/(n+2)]

N — number of anyon types; “rank”
di — quantum dimension “internal degrees of
freedom”
si — topological spin “internal angular
momentum mod 1”

Theorem
Bulk excitations C
determine topological
phases up to invertible
ones.
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Stacking Operation

Consider stacking two layers of topological phases A and B
with the same symmetry G to construct a new one A� B.

Before adding interactions between layers, the two layer
system A� B has a larger symmetry G× G.
Allow inter-layer local interactions that preserves only the
subgroup G of G× G via embedding g 7→ (g, g). This way
the two-layer system remain with the same symmetry G.
Denote such stacking by A�E B.
The stacking �E is obviously associative and commutative.
There is always a unit IE symmetric product state

IE �E A = A = A�E IE .

All topological phases with symmetry E form a
commutative monad under stacking.
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Invertible Phases

A is invertible if there exists A such that

A�E A = IE .

All invertible phases form an abelian group InvE .
Consider the chiral central charge of the edge states.
Taking central charge gives a group homomorphism from
invertible phases to rational numbers:

c : InvE → Q.

For a given symmetry E , there is a smallest positive central
charge cEmin, which is equivalent to c(InvE) = cEminZ.
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Invertible Phases

The kernel non-chiral symmetric invertible phases are the SPT phases
SPTE = ker c. Thus we have the central extension

0→ SPTE → InvE → cEminZ→ 0.

Since H2(Z,M) = 0 for any abelian group M, the above
must be a trivial extension

InvE = SPTE × cEminZ.

Will give the formula to compute SPTE and cEmin.
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Local Excitations under Stacking

The symmetry is preserved by the stacking �E , which
means we should have E �E E = E .
The embedding g 7→ (g, g) automatically induces a braided
monoidal functor

Rep(G)� Rep(G) = Rep(G× G)→ Rep(G),

x� y 7→ x⊗ y,

which is just taking tensor product of representions from
two layers.
We want a purely categorical description no G involved that is
extendable from E to C andM.
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Local Excitations under Stacking

Consider the tensor functor

⊗ : E � E → E ,
x� y 7→ x⊗ y.

Let its right adjoint be R, LE := R(1) ∼= ⊕ii� i∗ has a
canonical structure of condensable algebra.
LRep(G) = Fun[(G× G)/G].

E is obtained from E � E by condensing this LE .
Mathematically, taking the local modules representations of LE in
E � E

(E � E)0
LE = E .

So we define
E �E E := (E � E)0

LE .
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Stacking of C andM

Easy to extend. For E ⊂ C1 ⊂M1 and E ⊂ C2 ⊂M2,
naturally

LE ∈ E � E ⊂ C1 � C2 ⊂M1 �M2.

So we just take local modules in the larger categories
condense LE in larger categories

C1 �E C2 := (C1 � C2)0
LE , M1 �EM2 := (M1 �M2)0

LE .

The central charges just add up upon stacking.
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Group Structures of Modular Extensions

Theorem
Under the stacking �E , modular extensions of E ,Mext(E), form
an finite abelian group.

Mext(E) = InvE/8Z = SPTE × cEminZ/8Z.

A phase E ⊂ C ⊂M is invertible if and only if every excitation is
local E = C.

Theorem
The modular extensions of a UMTC/E C,Mext(C), if exist, form
anMext(E)-torsor.

UMTC/E C alone fixes the phase up to invertible ones.
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Bosonic and Fermionic Invertible Phases

Mext(E) = InvE/8Z = SPTE × cEminZ/8Z.

Bosonic invertible phase

The abelian groupMext(Rep(G)), modular extensions of Rep(G)
is isomorphic to H3(G,U(1)). Consistent with known classification of bosonic SPT.

All modular extensions of Rep(G) have central charge 0 mod 8.
cRep(G)
min = 8.

Fermionic invertible phase
Fermionic SPTs and invertible topological orders in 2+1D are
given by the groupMext(sRep(Gf )). The zero central charge
subgroup gives the SPTs and csRep(G)

min = 1/2 or 1 can also be
extracted.
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Summary and Outlook

2+1D Topological Phases with Symmetry[1]

G ⊂ GH, E ⊂ C ⊂M, c

1+1D 2+1D 3+1D

Symmetry breaking
X©

X[1]©

X
SPT X

TO with symmetry (SET) × X
Topological order × X[2]

Fracton topological phase × × X
??? × × ???

3+1D Topological Order[2]

Gauging: 3+1D SPT� 3+1D topological order
3+1D topological orders are all gauged SPTs.
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