A Framework for 2+1D Topological Phases with Symmetries

Tian Lan

Institute for Quantum Computing University of Waterloo

In collaboration with Liang Kong, Xiao-Gang Wen

SUSTech, Shenzhen, Jan 4, 2020

Phys. Rev. B 94, 155113 (2015), arXiv:1507.04673 Phys. Rev. B 95, 235140 (2017), arXiv:1602.05946 Commun. Math. Phys. 351, 709–739 (2017), arXiv:1602.05936

イロト イ押 トイヨ トイヨ トー

B

 $2Q$

Topological Phases of Matter

- Quantum phases of matter $(H = \sum_i H_i, V = \otimes_i V_i)$ with local structures and a finite energy gap.
- $\textsf{Symmetry} \,\, U_{g} H U_{g}^{-1} = H, \, g \in G_H.$
- Used to be considered solved by Landau symmetry breaking theory.
- Exotic phases with "topological" nature discovered.
- Fractional quantum Hall: fractional charges, fractional statistics, protected gapless edge states.
	- \rightarrow Intrinsic topological order, not requiring any symmetry

X.-G. Wen, Int. J. Mod. Phys. B 4, 239 (1990); X.-G. Wen and Q. Niu, Phys. Rev. B 41, 9377 (1990)

• Topological insulator: symmetry protected gapless (conducting) edge states.

 \rightarrow Symmetry protected topological (SPT) phases, no intrinsic topological order

X. Chen, Z.-C. Gu, Z.-X. Liu, and X.-G Wen, Phys. Rev. B 87, 155[114](#page-0-0) (2[01](#page-2-0)[3\),](#page-0-0) [Sci](#page-1-0)[en](#page-2-0)[ce](#page-0-0) [338,](#page-20-0) [160](#page-0-0)[4 \(2](#page-20-0)[012](#page-0-0)[\)](#page-20-0)

 $2Q$

Topological Phases in Different Dimensions

Complete classification in 1+1D

- Symmetry breaking phases *G* ⊂ *G^H G^H* is the symmetry group of the Hamiltonian *G* is the symmetry group of the ground states
- 1+1D Topological phases $G \subset G_H$, pRep(*G*) (or $H^2(G, U(1))$) Symmetry breaking, SPT Chen, Z.-C. Gu, and X.-G. Wen, Phys. Rev. B 83, 035107 (2011) N. Schuch, D. Perez-Garcia, and I. Cirac, Phys. Rev. B 84, 165139 (2011)

But in 2+1D need to combine symmetry wi[th](#page-1-0) [to](#page-3-0)[p](#page-1-0)[ol](#page-2-0)[o](#page-3-0)[gic](#page-0-0)[al](#page-20-0) [o](#page-0-0)[rd](#page-20-0)[er.](#page-0-0)

 QQ

Framework

2+1D Topological Phases

$$
G\subset G_H, \quad \mathcal{E}\subset \mathcal{C}\subset \mathcal{M}, \quad c
$$

 $G \subset G_H$ — Symmetry breaking $\mathcal{E}, \mathcal{C}, \mathcal{M}$ — unitary braided fusion categories (UBFC) fusion and braiding (statistics) of quasiparticles (anyon model)

- $\mathcal E$ local excitations carrying group representations symmetric fusion category, $\mathsf{Rep}(G)$ or $\mathsf{sRep}(G^f)$
- $\mathcal C$ $\mathcal E$ plus "anyons", all bulk excitations UBFC with Müger center \mathcal{E} , UMTC \mathcal{E}

 $\mathcal M$ C plus "gauged symmetry defects", excitations in the "gauged" phase

minimal modular extension of C

captures some information of "invertible" stack to trivial phases

 c — central charge, to address E_8 states that are invisible to M.

イロト イ伊 トイヨ トイヨ トー

 \bar{z}

Local Excitations $\mathcal E$

- **•** The "non-exotic" excitations that can be created by local operators.
- Carry symmetry charges/representations.
- **Boson systems** $\mathcal{E} = \text{Rep}(G)$ **, fusion is tensor product of** representations, braiding is all trivial.
- Fermion systems $\mathcal{E} = s \text{Rep}(G^f)$, whose fusion is the same as $Rep(G)$, but braiding is different. The phase of braiding two fermions is changed to -1 .
- \bullet $\mathcal E$ uniquely determines the symmetry group G .

Tannaka-Krein Duaility; P. Deligne, Catégories tensorielles, Mosc. Math. J. 2 (2002), no. 2, 227–248

2+1D Topological Phases

$$
G\subset G_H,\quad \mathcal{E}\subset \mathcal{C}\subset \mathcal{M},\quad c
$$

≮ロ ▶ ⊀ 御 ▶ ⊀ ヨ ▶ ⊀ ヨ ▶

÷. QQ

All Bulk Excitations C

- Local excitations \mathcal{E} + "exotic" ones (fractional/non-Abelian anyons)
- Braiding non-degeneracy:

"Exotic" excitations must be detectable remotely.

The excitations with trivial mutual braiding statistics with all excitations in $\mathcal C$ must be the local ones.

Müger center of C coincide with \mathcal{E} . UMTC over \mathcal{E} , UMTC $_{\ell \mathcal{E}}$

 C has anomaly if not satisfied, requiring a $3+1D$ topological ordered bulk.

- Extreme case $\mathcal{E} = \mathcal{C}, c = 0$: SPT
- SPT has non-trivial classification. Need more information than $\mathcal{E} \subset \mathcal{C}$.

2+1D Topological Phases

$$
G\subset G_H,\quad \mathcal{E}\subset \mathcal{C}\subset \mathcal{M},\quad c
$$

イロメ 不優 トメ ヨ メ ス ヨ メー

÷. QQ

Gauging/Modular Extension M

• Promote extrinsic symmetry defects to dynamical excitations, "gauge the symmetry"

```
M. Levin and Z.-C. Gu, Phys. Rev. B 86, 115109 (2012)
```
化重新润滑剂

 $2Q$

 \rightarrow bosonic topological order with no symmetry

- A larger anyon model (UMTC) that contains all bulk excitations C plus gauged symmetry defects $=$ minimal modular extension of \mathcal{C}
- The gauged symmetry defects can detect $\mathcal E$ via braidings.
- "Minimal" in the sense that gauged symmetry defects must have non-trivial mutual statistics with at least one local excitation in $\mathcal E$. The centralizer of $\mathcal E$ in $\mathcal M$ is $\mathcal C$.

2+1D Topological Phases

$$
G\subset G_H,\quad \mathcal{E}\subset \mathcal{C}\subset \mathcal{M},\quad c
$$

Gauging/Modular Extension M

- UMTC M captures most information and fixes the chiral central charge *c* modulo 8.
- Only ambiguity left is invertible states with no anyons and central charge in 8Z.

They are generated by the E_8 state, fixed by the chiral central charge *c*.

 \bullet Minimal modules extension may not exist, in which case $\mathcal C$ has symmetry anomaly, requiring a 3+1D SPT bulk.

2+1D Topological Phases

$$
G\subset G_H,\quad \mathcal{E}\subset \mathcal{C}\subset \mathcal{M},\quad c
$$

イロト イ伊 トイヨ トイヨ トー

G.

 QQ

Examples

Assume no symmetry breaking in the following.

Toric code model with no symmetry (\mathbb{Z}_2) gauge theory)

$$
\mathcal{E} = \{1\}, \mathcal{C} = \mathcal{M} = \mathcal{M}_{tc} = \{1, e, m, f\}, c = 0.
$$

Z *f* $\frac{\pi}{2}$ invertible fermionic topological orders

$$
\mathcal{E} = \mathcal{C} = \text{sRep}(\mathbb{Z}_2^f) = \{1, f\}.
$$

$$
f \otimes f = 1, s_f = 1/2
$$

16-fold way 16 M with central charge $c = \frac{n}{2}$ $\frac{1}{2}$. 8 Ising type $\{1\\},sigma\},d_{\sigma}=\sqrt{2}.$ ${}_{p+ip}$ superconductors. ${}_{\sigma}$ "vortex", flux of gauged \mathbb{Z}_{2}^{f} . √ 8 Abelian: $4 \mathbb{Z}_2 \times \mathbb{Z}_2$ fusion, $4 \mathbb{Z}_4$ fusion. Integer quantum hall states.

イロト イ押 トイヨ トイヨ トーヨー

$$
\mathcal{E} = \mathcal{C} = \text{Rep}(\mathbb{Z}_2) = \{1_+, 1_-\}, \quad 1_- \otimes 1_- = 1_+.
$$

$$
\mathcal{M} = \mathcal{M}_{tc} = \{1 \sim 1_+, e \sim 1_-, m, f\}.
$$

 $m, f = m \otimes 1$ ₋, flux of gauged \mathbb{Z}_2 , trivial phase.

OR

$$
\mathcal{M}=\mathcal{M}_{ds}=\{1\sim 1_+,s,\bar{s},s\bar{s}\sim 1_-\}.
$$

 $s, \bar{s} = s \otimes 1$ ₋, flux of gauged \mathbb{Z}_2 , nontrivial SPT

SPT is reflected in the "symmetry defects" or "flux of the gauged theory".

イロト イ団 トイミト イミト・ミニ りなび

Examples

Toric code with \mathbb{Z}_2 symmetry (no interaction between symmetry and topological order)

$$
\mathcal{E} = \text{Rep}(\mathbb{Z}_2) = \{1_+, 1_-\}.
$$

$$
\mathcal{C} = \text{Rep}(\mathbb{Z}_2) \boxtimes \mathcal{M}_{tc} = \{1_+, 1_-\} \times \{1, e, m, f\}.
$$

$$
\mathcal{M} = \mathcal{M}_{tc} \boxtimes \mathcal{M}_{tc} \quad \text{OR} \quad \mathcal{M} = \mathcal{M}_{ds} \boxtimes \mathcal{M}_{tc}
$$

Toric code with e, m exchange \mathbb{Z}_2 symmetry

$$
\mathcal{E}=\text{Rep}(\mathbb{Z}_2)=\{1_+,1_-\}.
$$

$$
\mathcal{C} = \{1_+, 1_-, f_+, f_-, \tau \sim e \oplus m\}.
$$

 $\mathcal{M} \sim$ Ising \boxtimes Ising, two versions.

Two M differ by the stacking of non-trivial \mathbb{Z}_2 SPT phase. A general theorem

K ロ ▶ K 何 ▶ K ヨ ▶ K ヨ ▶

÷.

Table of Topological Phases

 L in terms of anyon spectrum:

N — number of anyon types; "rank"

di — quantum dimension "internal degrees of freedom"

si — topological spin "internal angular momentum mod 1"

Theorem

Bulk excitations C determine topological phases up to invertible ones.

イロメ 不優 トメ ヨ メ ス ヨ メー

÷.

 $2Q$

Stacking Operation

Consider stacking two layers of topological phases A and B with the same symmetry G to construct a new one $\mathcal{A}\boxtimes\mathcal{B}.$

- Before adding interactions between layers, the two layer system $\mathcal{A} \boxtimes \mathcal{B}$ has a larger symmetry $G \times G$.
- Allow inter-layer local interactions that preserves only the subgroup *G* of $G \times G$ via embedding $g \mapsto (g, g)$. This way the two-layer system remain with the same symmetry *G*. Denote such stacking by $\mathcal{A} \boxtimes_{\mathcal{E}} \mathcal{B}$.
- The stacking $\boxtimes_\mathcal{E}$ is obviously associative and commutative.
- There is always a unit $I_{\mathcal{E}}$ symmetric product state

$$
\mathcal{I}_{\mathcal{E}} \boxtimes_{\mathcal{E}} \mathcal{A} = \mathcal{A} = \mathcal{A} \boxtimes_{\mathcal{E}} \mathcal{I}_{\mathcal{E}}.
$$

• All topological phases with symmetry $\mathcal E$ form a commutative monad under stacking.

イロン イ押ン イヨン イヨン 一重

Invertible Phases

 \bullet A is invertible if there exists \overline{A} such that

$$
\mathcal{A}\boxtimes_{\mathcal{E}}\overline{\mathcal{A}}=\mathcal{I}_{\mathcal{E}}.
$$

- All invertible phases form an abelian group $\text{Inv}_{\mathcal{E}}$.
- Consider the chiral central charge of the edge states. Taking central charge gives a group homomorphism from invertible phases to rational numbers:

$$
c:\mathbf{Inv}_{\mathcal{E}}\to\mathbb{Q}.
$$

 \bullet For a given symmetry \mathcal{E} , there is a smallest positive central charge $c_{\min}^{\mathcal{E}}$, which is equivalent to $c(\mathbf{Inv}_{\mathcal{E}}) = c_{\min}^{\mathcal{E}} \mathbb{Z}$.

イロト イ押 トイヨ トイヨ トー

Invertible Phases

• The kernel non-chiral symmetric invertible phases are the SPT phases $\text{SPT}_{\mathcal{E}} = \ker c$. Thus we have the central extension

$$
0\to \mathbf{SPT}_{\mathcal{E}}\to \mathbf{Inv}_{\mathcal{E}}\to c^\mathcal{E}_{\min}\mathbb{Z}\to 0.
$$

Since $H^2(\mathbb{Z},M) = 0$ for any abelian group M, the above must be a trivial extension

$$
Inv_{\mathcal{E}} = SPT_{\mathcal{E}} \times c_{\min}^{\mathcal{E}} \mathbb{Z}.
$$

Will give the formula to compute $\mathbf{SPT}_{\mathcal{E}}$ and $c_{\min}^{\mathcal{E}}.$

イロト イ押 トイヨ トイヨ トーヨー

 QQ

Local Excitations under Stacking

- The symmetry is preserved by the stacking $\boxtimes_{\mathcal E}$, which means we should have $\mathcal{E} \boxtimes_{\mathcal{E}} \mathcal{E} = \mathcal{E}.$
- The embedding $g \mapsto (g, g)$ automatically induces a braided monoidal functor

$$
Rep(G) \boxtimes Rep(G) = Rep(G \times G) \to Rep(G),
$$

$$
x \boxtimes y \mapsto x \otimes y,
$$

which is just taking tensor product of representions from two layers.

• We want a purely categorical description no *G* involved that is extendable from $\mathcal E$ to $\mathcal C$ and $\mathcal M$.

イロト イ押 トイヨ トイヨ トーヨー

Local Excitations under Stacking

• Consider the tensor functor

$$
\otimes : \mathcal{E} \boxtimes \mathcal{E} \to \mathcal{E},
$$

$$
x \boxtimes y \mapsto x \otimes y.
$$

Let its right adjoint be R , $L_{\mathcal{E}} := R(1) \cong \bigoplus_i i \boxtimes i^*$ has a canonical structure of condensable algebra.

 $L_{\text{Rep}(G)} = \text{Fun}[(G \times G)/G].$

- $\mathcal E$ is obtained from $\mathcal E\boxtimes \mathcal E$ by condensing this $L_{\mathcal E}.$
- Mathematically, taking the local modules representations of $L_{\mathcal{E}}$ in $\mathcal{E} \boxtimes \mathcal{E}$

$$
(\mathcal{E}\boxtimes\mathcal{E})_{L_{\mathcal{E}}}^{0}=\mathcal{E}.
$$

So we define

$$
\mathcal{E} \boxtimes_{\mathcal{E}} \mathcal{E} := (\mathcal{E} \boxtimes \mathcal{E})^0_{L_{\mathcal{E}}}.
$$

K 何 ▶ K ヨ ▶ K ヨ ▶ ...

÷. QQ

Stacking of $\mathcal C$ and $\mathcal M$

 \bullet Easy to extend. For $\mathcal{E} \subset \mathcal{C}_1 \subset \mathcal{M}_1$ and $\mathcal{E} \subset \mathcal{C}_2 \subset \mathcal{M}_2$, naturally

$L_{\mathcal{E}} \in \mathcal{E} \boxtimes \mathcal{E} \subset \mathcal{C}_1 \boxtimes \mathcal{C}_2 \subset \mathcal{M}_1 \boxtimes \mathcal{M}_2.$

• So we just take local modules in the larger categories condense $L_{\mathcal{E}}$ in larger categories

$$
\mathcal{C}_1 \boxtimes_{\mathcal{E}} \mathcal{C}_2 := (\mathcal{C}_1 \boxtimes \mathcal{C}_2)_{L_{\mathcal{E}}}^0, \quad \mathcal{M}_1 \boxtimes_{\mathcal{E}} \mathcal{M}_2 := (\mathcal{M}_1 \boxtimes \mathcal{M}_2)_{L_{\mathcal{E}}}^0.
$$

• The central charges just add up upon stacking.

≮ロト ⊀何 ト ⊀ ヨ ト ⊀ ヨ ト

 \equiv Ω

Group Structures of Modular Extensions

Theorem

Under the stacking $\boxtimes_\mathcal{E}$, modular extensions of $\mathcal{E},$ $\mathcal{M}_{ext}(\mathcal{E}),$ form an finite abelian group.

$$
\mathcal{M}_{ext}(\mathcal{E}) = \mathbf{Inv}_{\mathcal{E}}/8\mathbb{Z} = \mathbf{SPT}_{\mathcal{E}} \times c_{\min}^{\mathcal{E}} \mathbb{Z}/8\mathbb{Z}.
$$

A phase $\mathcal{E} \subset \mathcal{C} \subset \mathcal{M}$ is invertible if and only if every excitation is $local \mathcal{E} = C$.

Theorem

The modular extensions of a UMTC_{/E} C, $\mathcal{M}_{ext}(\mathcal{C})$, if exist, form an $\mathcal{M}_{ext}(\mathcal{E})$ -torsor.

 $UMTC_{\ell\mathcal{E}}$ C alone fixes the phase up to invertible ones.

K ロ ▶ K 何 ▶ K ヨ ▶ K ヨ ▶

÷. QQ

Bosonic and Fermionic Invertible Phases

$$
\mathcal{M}_{ext}(\mathcal{E}) = \text{Inv}_{\mathcal{E}}/8\mathbb{Z} = \text{SPT}_{\mathcal{E}} \times c_{\min}^{\mathcal{E}} \mathbb{Z}/8\mathbb{Z}.
$$

Bosonic invertible phase

The abelian group $\mathcal{M}_{ext}(\text{Rep}(G))$, modular extensions of $\text{Rep}(G)$ is isomorphic to $H^3(G, U(1))$. Consistent with known classification of bosonic SPT. All modular extensions of $Rep(G)$ have central charge $0 \mod 8$. $c_{\min}^{\text{Rep}(G)}=8.$

Fermionic invertible phase

Fermionic SPTs and invertible topological orders in 2+1D are given by the group $\mathcal{M}_{ext}(\mathrm{sRep}(G^f)).$ The zero central charge subgroup gives the SPTs and $c_{\min}^{\mathrm{sRep}(G)} = 1/2$ or 1 can also be extracted.

イロト イ団ト イヨト イヨト

 \equiv

Summary and Outlook

 $2+1D$ Topological Phases with Symmetry^[1]

G ⊂ *G*_{*H*}, \mathcal{E} ⊂ \mathcal{C} ⊂ \mathcal{M} , *c*

3+1D Topological Order^[2]

Gauging: $3+1D$ SPT \rightarrow $3+1D$ topological order 3+1D topological orders are all gauged SPTs.

K ロ ト K 何 ト K ヨ ト K ヨ ト

 \equiv