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Objectives

Build a general framework for topological phases in
arbitrary dimensions.
Classify SET/SPT (symmetry enriched/protected
topological) phases in higher dimensions.
Understand higher symmetries.

Collaborators:

Xiao-Gang Wen Liang Kong Hao Zheng Zhi-Hao Zhang Chenchang Zhu
MIT SUSTech U of Göttingen
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General Framework

Study the higher category of topological defects.
Categorical philosophy:
– Care about the relations between things, instead of what
the thing itself is.
Defect itself is a relation.
Fusion of defects.
Boundary-bulk relation.
“Defect” in a very general sense:

An nD nD always mean n spacetime dimensions in this talk anomaly-free
topological phase is a defect in the (n + 1)D trivial phase.
No defect is understood as a trivial defect.
A pD topological excitation is a defect on a (p + 1)D trivial
defect.
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Defect as a relation

Suppose that A,B are nD defects, C is an (n − 1)D defect
between A,B.
In categorical language, C is a morphism from A to B,
denoted by C : A → B.
The (n − 1)-category of all the defects between A and B is
denoted by Hom(A,B).
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Notation

1n+1 denotes the (n + 1)D trivial phase.
1n is the trivial defect in 1n+1, also the nD trivial phase.
C : 1n+1 → 1n+1 is an anomaly-free nD topological phase.
C := End(C) = Hom(C,C) is all the (n − 1)D defects in C.
idC : C → C is the (n − 1)D trivial defect in C.
ΩC := End(idC) = Hom(idC, idC), looping of C, is the
(n − 2)D excitations in C.
ididC : idC → idC is the (n − 2)D trivial defect in C.
Ω2C = ΩΩC := End(ididC) is the (n − 3)D excitations in C.
. . .
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Fusion of defects

Two nD defects B : A → A and C : A → A can be fused to a
defect B ⊠A C : A → A.
Two (n − 1)D defects P,Q : B → B on B, can fuse along B,
P ⊠B Q : B → B.
Two (n − 1)D defects P : B → B, R : C → C on B,C
respectively, can fuse together with B,C,
P ⊠A R : B ⊠A C → B ⊠A C.
Higher codimension, more ways of fusion.
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Fusion of defects

Consistency between different ways of fusion.
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Commutativity of higher codimensional excitations

For an nD phase C : 1n+1 → 1n+1:
Codimension 1 defects C := End(C) = Hom(C,C) is a
monoidal (fusion)
Codimension 2 excitations ΩC := End(idC) is a braided
(n − 2)-category. Two ways of fusion
Codimension p excitations Ωp−1C is a Ep-monoidal
(n − p)-category. p ways of fusion
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Boundary-bulk relation

Holographic principle
Boundary uniquely determines the bulk.

Let C : 1n+1 → 1n+1 be an nD anomaly-free phase.
The boundary of C is a defect B : C → 1n.
How C is determined from B?
Consider the category of defects C = Hom(C,C) and
B = Hom(B,B). C can be determined from B via two steps
of constructions:

C = ΣZ1(B).

Z1(B) is the Drinfeld center of B and Σ denotes
condensation completion.
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Drinfeld center

Bulk to boundary functor: Bring the trivial defect idC to B
will not change B. Thus codimension 2 excitations
ΩC = Hom(idC, idC) can be brought to the boundary. There
is a functor FB : ΩC → B by FB(X) = X ⊠C idB.
Such functor is central: ∀X ∈ ΩC and Y ∈ B

FB(X)⊠B Y ≃ Y ⊠B FB(X).
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Drinfeld center

Let B be a monoidal n-category. Its Drinfeld center (or E1
center) Z1(B) is the “maximal” (limit, universal) braided
monoidal n-category such that there is central functor from
Z1(B) to B. Z1(B) can be constructively defined via half-braiding, or bimodule functors

HomB|B(B,B).

In general the bulk ΩC is a subcategory of the Drinfeld
center Z1(B) of the boundary B.
When there is no other constraints such as symmetry, we
should have ΩC = Z1(B).
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Condensation completion

We denote by ΣB the condensation completion of B.
Physically, the condensation completion means including
all (n + 1)D defects that can be obtained via the
condensation of nD or lower defects.
Mathematically, “completion” means including the results
of all possible operations.

Expansion of numbers: N ⊂ Z ⊂ Q ⊂ R ⊂ C.
Constructing a vector space from a given set of basis
vectors. One includes all linear combinations.

The difference is that higher category has far more
operations. Vector space has one way of addition and one way of mulplication while n-category

has n ways of addition (direct sum) and n ways of mulplication (fusion).
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Condensation completion

A mathematical formulation was given by Gaiotto and
Johnson-Freyd. ΣB is the Karoubi (or idempotent)
completion of one point delooping of B.

D. Gaiotto, T. Johnson-Freyd, Condensations in higher categories, 2019, [arXiv:1905.09566].

Looping ΩC = Hom(idC, idC).
Delooping: Given a fusion n-category B, the one point
delooping is an (n + 1)-category with only one object ∗ and
morphisms being B.
Looping is the left inverse to condensation completion
ΩΣB = B.
The higher defects may not all come from the condensation
of lower ones. Thus ΣΩC ⊂ C. ΣΩ is like a “projection”.
But possibly our condensation completion needs to be
more general.
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Boundary-bulk relation revisit

Suppose C : 1n+1 → 1n+1 has a boundary B : C → 1n.
By the holographic principle, B should uniquely determine
C.
Let C = Hom(C,C) and B = Hom(B,B). When there is no
symmetry, ΩC is determined by B via Drinfeld center
ΩC = Z1(B).
It is natural to expect that all codimension 1 defects must
come from condensation of codimension 2 excitations,
namely C = ΣΩC = ΣZ1(B).

Tian Lan Topological Phases in Arbitrary Dimensions



Anomaly-free condition

For nD anomaly-free phase C : 1n+1 → 1n+1, and
C = Hom(C,C), the followings are true

1 Z1(C) = ΩHom(1n+1, 1n+1) = Hom(1n, 1n).
2 ΩC is a non-degenerate braided fusion (n − 2)-category.

And C = ΣΩC, all codimension 1 defects must come from
condensation of codimension 2 excitations.

Conjecture
The two statements above are equivalent to each other.

Example
(2+1)D topological order is described by non-degenerate
braided fusion 1-category (namely modular tensor category if
assuming unitary structure).
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Condensation completion is not for free

Clearly, trivial phases are always anomaly-free.

Corollary

Hom(1n+1, 1n+1) = ΣHom(1n, 1n) = · · · = Σn Hom(11, 11) = ΣnC.

It seems our problem of understanding higher dimensional
topological orders is “solved” by condensation
condensation.
But the truth is condensation completion is not for free.
Unless we fully understand nD phases, we can in practice
carry out the computation of condensation completion from
(n − 1)D to nD.
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Stacking

TOn := Hom(1n+1, 1n+1) is the category of nD anomaly-free
phases.
Consider the category of defects in all dimensions. They
form an ∞-category TO∞. TOn = Hom(1n+1, 1n+1) is
looping “∞− n” times of such ∞-category TO∞. Therefore
Hom(1n+1, 1n+1) must be symmetric.
Given C,D ∈ Hom(1n+1, 1n+1), their fusion C ⊠1n+1 D is
nothing but the stacking of topological phases C and D.
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Invertible phases

C : 1n+1 → 1n+1 is invertible if there exists D such that
C ⊠1n+1 D = 1n.
Consider the defects in C,D, under stacking we have

End(C)⊠1n+1 End(D) = End(C ⊠1n+1 D),

which implies that when C,D are invertible, we must have

End(C) = End(D) = End(1n).

In other words, defects in an invertible phase are the same
as those in the trivial phase.
The defects inside a phase C, C = End(C) = Hom(C,C), is
only a description up to invertible phases.
Whey there is symmetry, there can be extra invertible
phases with symmetry (e.g., SPT). These extra ones are
still accesible by studing defects inside a phase.
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Symmetry

In the categorical approach, we focus on the symmetry
“charges” which are excitations, instead of the symmetry
operators. The equivalence is guaranteed by Tannaka duality.

Given a symmetry G, the symmetry charges are (0 + 1)D
excitations, given by RepG as a symmetric 1-catgory.
The symmetry charges can condense on a line, plane,. . . ,
to form higher dimensional phases/defects.
2D defects via condensation completion ΣRepG ≡ 2RepG.
L. Kong, Y. Tian, S. Zhou, The center of monoidal 2-categories in 3+1D Dijkgraaf-Witten Theory, Adv. Math.

360 (2020) 106928 [arXiv:1905.04644].

3D defects via condensation completion Σ2RepG ≡ 3RepG.
Since (2+1)D phases are much more complicated than (1+1)D ones, so far we do not know how to compute

3RepG in practice.

. . . .
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Topological phases with symmetry G

Hom(1n+1, 1n+1) = Σn−1 Hom(12, 12) = nRepG.
This is not the end of story though. We have to climb the
ladder of dimensions and understand the phases in lower
dimension, before we can compute the condensation
completion.
It is used like an assumption in proof by induction.
Suppose we already know nD phases with symmetry G (G
SET), nRepG. How to classify (n + 1)D G SET? Below we
give a classification up to (n + 1)D invertible phases with
no symmetry.
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Topological phases with symmetry G

Given an (n + 1)D anomaly-free phase C : 1n+2 → 1n+2, and
C = Hom(C,C) the nD defects in C. That C has symmetry G
means C is a fusion n-category over nRepG, namely,

1 The symmetry charges and their higher dimensional
condensation descendants are included in C, nRepG ↪→ C.

2 The codimension 2 excitations in the bulk 1n+2 of C,
Hom(1n+1, 1n+1) = nRepG, must be a subcategory of Z1(C),
i.e., there is a braided embedding nRepG ↪→ Z1(C).

3 nRepG is local in C. In other words, they can braid with
defects in C in a symmetric way. Thus we require the
following diagram to commute.

Z1(C)

!!

nRepG
, �

::

� � // C
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Topological phases with symmetry G

In particular, take C to be the trivial phase 1n+1. We know
C = Hom(1n+1, 1n+1) = nRepG is a description up to
invertible phases.
To know something about invertible phases, previous
discussion suggests that we should include the canonical
embedding nRep(G) ↪→ Z1(nRepG) as an extra data.
As we will later see, this allows us to see the quotient

Invertible phases with symmetry G
Invertible phases without symmetry

,

namely the SPT phases.
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Topological phases with symmetry G

Note that the extra data nRepG ↪→ Z1(C) is actually in the
bulk of C.
The bulk of trivial phase the trivial bulk is given by
nRep(G) ↪→ Z1(nRepG).
For C to be anomaly-free, its bulk must coincide with the
trivial bulk, namely we should have a braided equivalence
Z1(nRepG)

≃−→ Z1(C) such that

nRepG� r

$$

kK

xx

Z1(nRepG)
≃ // Z1(C)
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Topological phases with symmetry G

Theorem
The classification of G SETs in (n + 1)D up to invertible phases
with no symmetry is given by fusion n-category C over nRepG
together with a braided equivalence Z1(nRepG)

≃−→ Z1(C),
satisfying

nRepG� r

$$

kK

xx

Z1(nRepG)
≃ // Z1(C)

Liang Kong, TL, Xiao-Gang Wen, Zhi-Hao Zhang, Hao Zheng, Classification of topological phases with finite internal

symmetries in all dimensions, [arXiv:2003.08898].
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Topological phases with symmetry G

Corollary
In particular, when C = nRepG, C is an invertible phase. The
autoequivalences Z1(nRepG)

≃−→ Z1(nRepG) that preserve the
embedding nRepG ↪→ Z1(nRepG), denoted by
Aut(Z1(nRepG), nRepG), gives the classification of (n + 1)D G
SPTs.

Examples

(1+1)D SPT: Aut(Z1(RepG),RepG) = H2(G,U(1)).

(2+1)D SPT: Aut(Z1(2RepG), 2RepG) = H3(G,U(1)).

The higher dimensional examples are not easy to
compute. But at least we can confirm that the result will be
beyond Hn+1(G,U(1)).

Liang Kong, TL, Xiao-Gang Wen, Zhi-Hao Zhang, Hao Zheng, Classification of topological phases with finite internal

symmetries in all dimensions, [arXiv:2003.08898].
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Higher symmetry

For a more general higher symmetry, we may replace
nRepG for any symmetric higher categories En,
n = 0, 1, 2, . . . , where En = ΩEn+1.
There will an integer p such that

En+1 = ΣEn,∀n > p

Ep+1 ̸= ΣEp.

In other words, the (p + 1)D defects are elementary. Higher
dimensional defects are condensation descendants. Such
higher symmetry is called a p-symmetry. The usual global
symmetry specified by a group G is thus a 0-symmetry.
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Topological phases with higher symmetry

Topological phases with higher symmetry are classified in a
similar manner:

Hom(1n+1, 1n+1) = En,

C ∈ En+1,C = Hom(C,C),

En � p

""

mM

||

Z1(En)
≃ // Z1(C)

Thanks for attention!
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