Introduction to Categorical Approach to Topological Phases in Arbitrary Dimensions

Tian Lan

Institute for Quantum Computing University of Waterloo

Harvard CMSA, Apr 15, 2020

→ 重き → 重き

B

Objectives

- Build a general framework for topological phases in arbitrary dimensions.
- Classify SET/SPT (symmetry enriched/protected topological) phases in higher dimensions.
- Understand higher symmetries.

Collaborators:

Xiao-Gang Wen Liang Kong Hao Zheng Zhi-Hao Zhang Chenchang Zhu

U of Göttingen

メミメメ ヨメ

B

 $2Q$

4 0 8

General Framework

- Study the higher category of topological defects.
- Categorical philosophy:
	- Care about the relations between things, instead of what the thing itself is.
- Defect itself is a relation.
- **•** Fusion of defects.
- Boundary-bulk relation.
- "Defect" in a very general sense:
	- An *n*D _{*nD* always mean *n* spacetime dimensions in this talk anomaly-free} topological phase is a defect in the $(n + 1)$ D trivial phase.
	- No defect is understood as a trivial defect.
	- A p D topological excitation is a defect on a $(p + 1)$ D trivial defect.

 $\left\{ \left(\left| \mathbf{P} \right| \right) \in \mathbb{R} \right\} \times \left\{ \left| \mathbf{P} \right| \right\}$

÷. QQ

Defect as a relation

- Suppose that *A*, *B* are *n*D defects, *C* is an (*n* − 1)D defect between *A*, *B*.
- \bullet In categorical language, *C* is a morphism from *A* to *B*, denoted by $C : A \rightarrow B$.
- The (*n* − 1)-category of all the defects between *A* and *B* is denoted by Hom(*A*, *B*).

K 何 ▶ K ヨ ▶ K ヨ ▶ ...

÷.

Notation

- \bullet 1_{n+1} denotes the $(n+1)$ D trivial phase.
- \bullet 1_n is the trivial defect in 1_{n+1}, also the *n*D trivial phase.
- $C: 1_{n+1} \to 1_{n+1}$ is an anomaly-free *n*D topological phase.
- $C := \text{End}(C) = \text{Hom}(C, C)$ is all the $(n 1)D$ defects in C.
- $id_C : C \to C$ is the $(n-1)D$ trivial defect in *C*.
- $\Omega \mathcal{C} := \text{End}(\text{id}_C) = \text{Hom}(\text{id}_C, \text{id}_C)$, looping of C, is the (*n* − 2)D excitations in *C*.
- $\mathrm{id}_{\mathrm{id}_C}$ ∶ id_C → id_C is the $(n-2)$ D trivial defect in C .
- $\Omega^2 \mathcal{C} = \Omega \Omega \mathcal{C} := \text{End}(\text{id}_{\text{id}_C})$ is the $(n-3)$ D excitations in C .
- \bullet . . .

◆ロ→ ◆伊→ ◆ミ→ →ミ→ ニヨー

Fusion of defects

- Two *n*D defects $B: A \to A$ and $C: A \to A$ can be fused to a defect $B \boxtimes_A C : A \rightarrow A$.
- \bullet Two $(n-1)$ D defects $P, Q : B \rightarrow B$ on *B*, can fuse along *B*, $P \boxtimes_B O : B \to B$.
- \bullet Two $(n-1)$ D defects $P : B \rightarrow B$, $R : C \rightarrow C$ on B, C respectively, can fuse together with *B*, *C*, $P \boxtimes_A R : B \boxtimes_A C \to B \boxtimes_A C$.
- Higher codimension, more ways of fusion.

K 何 ▶ K ヨ ▶ K ヨ ▶ ...

÷.

Fusion of defects

Consistency between different ways of fusion.

4 0 8

K個→ K 君→ K 君→ 三君 → のなで

Commutativity of higher codimensional excitations

For an *n*D phase $C: 1_{n+1} \rightarrow 1_{n+1}$:

- Codimension 1 defects $C := \text{End}(C) = \text{Hom}(C, C)$ is a monoidal (fusion)
- Codimension 2 excitations $\Omega \mathcal{C} := \text{End}(\text{id}_{\mathcal{C}})$ is a braided (*n* − 2)-category. Two ways of fusion
- $\operatorname{\mathsf{codimension}} p$ excitations Ω^{p-1} $\mathfrak C$ is a E_p -monoidal (*n* − *p*)-category. *p* ways of fusion

K ロ ▶ K 御 ▶ K ヨ ▶ K ヨ ▶ ...

G.

 QQ

Boundary-bulk relation

Holographic principle

Boundary uniquely determines the bulk.

Let $C: 1_{n+1} \to 1_{n+1}$ be an *n*D anomaly-free phase.

- The boundary of *C* is a defect $B: C \to 1_n$.
- How *C* is determined from *B*?
- Consider the category of defects $C = \text{Hom}(C, C)$ and $B = \text{Hom}(B, B)$. C can be determined from B via two steps of constructions:

$$
\mathcal{C}=\Sigma Z_1(\mathcal{B}).
$$

 $Z_1(\mathcal{B})$ is the Drinfeld center of B and Σ denotes condensation completion.

≮ロ ▶ ⊀ 御 ▶ ⊀ ヨ ▶ ⊀ ヨ ▶

ă. QQ

Drinfeld center

- Bulk to boundary functor: Bring the trivial defect id_C to *B* will not change *B*. Thus codimension 2 excitations $\Omega \mathcal{C} = \text{Hom}(\text{id}_{C}, \text{id}_{C})$ can be brought to the boundary. There is a functor $F_B: \Omega \mathcal{C} \to \mathcal{B}$ by $F_B(X) = X \boxtimes_C id_B$.
- \bullet Such functor is central: $\forall X \in \Omega$ *C* and *Y* ∈ *B*

 $F_B(X) \boxtimes_B Y \simeq Y \boxtimes_B F_B(X)$.

医电影 医医家庭

÷.

Drinfeld center

Let B be a monoidal *n*-category. Its Drinfeld center (or *E*¹ center) $Z_1(\mathcal{B})$ is the "maximal" (limit, universal) braided monoidal *n*-category such that there is central functor from $Z_1(\mathcal{B})$ to \mathcal{B} . $Z_1(\mathcal{B})$ can be constructively defined via half-braiding, or bimodule functors

 $Hom_{\mathcal{B}|\mathcal{B}}(\mathcal{B}, \mathcal{B}).$

- In general the bulk Ω C is a subcategory of the Drinfeld center $Z_1(\mathcal{B})$ of the boundary \mathcal{B} .
- When there is no other constraints such as symmetry, we should have $\Omega \mathcal{C} = Z_1(\mathcal{B})$.

K 何 ▶ K ヨ ▶ K ヨ ▶ ...

■ $2Q$

Condensation completion

- We denote by $\Sigma\mathcal{B}$ the condensation completion of \mathcal{B} . Physically, the condensation completion means including all $(n + 1)$ D defects that can be obtained via the condensation of *n*D or lower defects.
- Mathematically, "completion" means including the results of all possible operations.
	- Expansion of numbers: $N \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R} \subset \mathbb{C}$.
	- Constructing a vector space from a given set of basis vectors. One includes all linear combinations.
- The difference is that higher category has far more operations. Vector space has one way of addition and one way of mulplication while *ⁿ*-category

has *n* ways of addition (direct sum) and *n* ways of mulplication (fusion).

イロト イ押 トイヨ トイヨ トー

B

 QQ

Condensation completion

A mathematical formulation was given by Gaiotto and Johnson-Freyd. Σ B is the Karoubi (or idempotent) completion of one point delooping of B.

D. Gaiotto, T. Johnson-Freyd, Condensations in higher categories, 2019, [arXiv:1905.09566].

- Looping $\Omega \mathcal{C} = \text{Hom}(\text{id}_C, \text{id}_C)$.
- Delooping: Given a fusion *n*-category B, the one point delooping is an $(n + 1)$ -category with only one object $*$ and morphisms being B .
- Looping is the left inverse to condensation completion $\Omega \Sigma \mathcal{B} = \mathcal{B}.$
- The higher defects may not all come from the condensation of lower ones. Thus $\Sigma \Omega \mathcal{C} \subset \mathcal{C}$. $\Sigma \Omega$ is like a "projection".
- But possibly our condensation completion needs to be more general.

K ロ ▶ K 何 ▶ K ヨ ▶ K ヨ ▶

G.

Boundary-bulk relation revisit

- Suppose $C: 1_{n+1} \to 1_{n+1}$ has a boundary $B: C \to 1_n$.
- By the holographic principle, *B* should uniquely determine *C*.
- Let $C = Hom(C, C)$ and $B = Hom(B, B)$. When there is no symmetry, ΩC is determined by B via Drinfeld center $\Omega \mathcal{C} = Z_1(\mathcal{B}).$
- It is natural to expect that all codimension 1 defects must come from condensation of codimension 2 excitations, namely $C = \Sigma \Omega C = \Sigma Z_1(\mathcal{B}).$

イロト イ伊 トイヨ トイヨ トー

重

Anomaly-free condition

For *n*D anomaly-free phase $C: 1_{n+1} \rightarrow 1_{n+1}$, and $C = \text{Hom}(C, C)$, the followings are true

- **1** $Z_1(\mathcal{C}) = \Omega$ Hom $(\mathbf{1}_{n+1}, \mathbf{1}_{n+1}) =$ Hom $(\mathbf{1}_n, \mathbf{1}_n)$.
- ² ΩC is a non-degenerate braided fusion (*n* − 2)-category. And $C = \Sigma \Omega C$, all codimension 1 defects must come from condensation of codimension 2 excitations.

Conjecture

The two statements above are equivalent to each other.

Example

(2+1)D topological order is described by non-degenerate braided fusion 1-category (namely modular tensor category if assuming unitary structure).

イロト イ押 トイヨ トイヨ トー

Condensation completion is not for free

Clearly, trivial phases are always anomaly-free.

Corollarv

$\text{Hom}(\mathbf{1}_{n+1}, \mathbf{1}_{n+1}) = \Sigma \text{Hom}(\mathbf{1}_n, \mathbf{1}_n) = \cdots = \Sigma^n \text{Hom}(\mathbf{1}_1, \mathbf{1}_1) = \Sigma^n \mathbb{C}.$

- **•** It seems our problem of understanding higher dimensional topological orders is "solved" by condensation condensation.
- But the truth is condensation completion is not for free.
- Unless we fully understand *n*D phases, we can in practice carry out the computation of condensation completion from (*n* − 1)D to *n*D.

K ロ ▶ K 何 ▶ K ヨ ▶ K ヨ ▶

 2990

÷.

Stacking

- \bullet TO_n := Hom($1_{n+1}, 1_{n+1}$) is the category of *n*D anomaly-free phases.
- Consider the category of defects in all dimensions. They form an ∞ -category TO_{∞}. TO_n = Hom $(1_{n+1}, 1_{n+1})$ is looping "∞ − *n*" times of such ∞-category TO∞. Therefore $Hom(\mathbf{1}_{n+1}, \mathbf{1}_{n+1})$ must be symmetric.
- **●** Given $C, D \in$ Hom $(1_{n+1}, 1_{n+1})$, their fusion $C \boxtimes_{1_{n+1}} D$ is nothing but the stacking of topological phases *C* and *D*.

K 何 ▶ K ヨ ▶ K ヨ ▶ ...

÷.

Invertible phases

- • $C: 1_{n+1} \to 1_{n+1}$ is invertible if there exists *D* such that $C \boxtimes_{1_{n+1}} D = 1_n$.
- Consider the defects in *C*, *D*, under stacking we have

$$
\mathrm{End}(C)\boxtimes_{{\bf 1}_{n+1}}\mathrm{End}(D)=\mathrm{End}(C\boxtimes_{{\bf 1}_{n+1}}D),
$$

which implies that when *C*, *D* are invertible, we must have

$$
End(C) = End(D) = End(1_n).
$$

- In other words, defects in an invertible phase are the same as those in the trivial phase.
- The defects inside a phase C , $C = \text{End}(C) = \text{Hom}(C, C)$, is only a description up to invertible phases.
- Whey there is symmetry, there can be extra invertible phases with symmetry (e.g., SPT). These extra ones are still accesible by studing defects insid[e a](#page-16-0) [p](#page-18-0)[h](#page-16-0)[as](#page-17-0)[e](#page-18-0)[.](#page-0-0)

 Ω

Symmetry

- • In the categorical approach, we focus on the symmetry "charges" which are excitations, instead of the symmetry operators. The equivalence is guaranteed by Tannaka duality.
- Given a symmetry G, the symmetry charges are $(0 + 1)$ D excitations, given by Rep*G* as a symmetric 1-catgory.
- **The symmetry charges can condense on a line, plane....** to form higher dimensional phases/defects.
- 2D defects via condensation completion ΣRep*G* ≡ 2Rep*G*.

L. Kong, Y. Tian, S. Zhou, The center of monoidal 2-categories in 3+1D Dijkgraaf-Witten Theory, Adv. Math. 360 (2020) 106928 [arXiv:1905.04644].

3D defects via condensation completion $\Sigma^2 {\rm Rep} G \equiv 3 {\rm Rep} G.$

Since $(2+1)$ D phases are much more complicated than $(1+1)$ D ones, so far we do not know how to compute 3Rep*G* in practice.

イロト イ押 トイヨ トイヨ トー

÷. QQ

- \bullet Hom(1_{*n*+1}, 1_{*n*+1}) = Σ ^{*n*-1} Hom(1₂, 1₂) = *n*Rep*G*.
- This is not the end of story though. We have to climb the ladder of dimensions and understand the phases in lower dimension, before we can compute the condensation completion.
- It is used like an assumption in proof by induction.
- Suppose we already know *n*D phases with symmetry *G* (*G* SET), *n*Rep*G*. How to classify (*n* + 1)D *G* SET? Below we give a classification up to $(n + 1)$ D invertible phases with no symmetry.

イロト イ押 トイヨ トイヨ トー

 2990

÷.

Given an $(n + 1)$ D anomaly-free phase $C: \mathbf{1}_{n+2} \to \mathbf{1}_{n+2}$, and $C = \text{Hom}(C, C)$ the *n*D defects in *C*. That *C* has symmetry *G* means C is a fusion *n*-category over *n*Rep*G*, namely,

- **1** The symmetry charges and their higher dimensional condensation descendants are included in \mathcal{C} , $nRep G \hookrightarrow \mathcal{C}$.
- 2 The codimension 2 excitations in the bulk 1_{n+2} of *C*, $Hom(\mathbf{1}_{n+1}, \mathbf{1}_{n+1}) = nRep G$, must be a subcategory of $Z_1(\mathcal{C})$, i.e., there is a braided embedding $nRep G \hookrightarrow Z_1(\mathcal{C})$.
- ³ *n*Rep*G* is local in C. In other words, they can braid with defects in $\mathfrak C$ in a symmetric way. Thus we require the following diagram to commute.

- In particular, take *C* to be the trivial phase 1_{n+1} . We know $C = \text{Hom}(\mathbf{1}_{n+1}, \mathbf{1}_{n+1}) = n \text{Rep} G$ is a description up to invertible phases.
- To know something about invertible phases, previous discussion suggests that we should include the canonical embedding $n\text{Rep}(G) \hookrightarrow Z_1(n\text{Rep}(G))$ as an extra data.
- As we will later see, this allows us to see the quotient

Invertible phases with symmetry *G* Invertible phases without symmetry[?]

namely the SPT phases.

(御) メミンメミン

 QQ

- Note that the extra data $nRep G \hookrightarrow Z_1(\mathcal{C})$ is actually in the bulk of C.
- \bullet The bulk of trivial phase the trivial bulk is given by $nRep(G) \hookrightarrow Z_1(nRep(G)).$
- \bullet For C to be anomaly-free, its bulk must coincide with the trivial bulk, namely we should have a braided equivalence $Z_1(n \mathsf{Rep} G) \xrightarrow{\simeq} Z_1(\mathcal{C})$ such that

Theorem

The classification of *G* SETs in $(n + 1)D$ up to invertible phases with no symmetry is given by fusion *n*-category C over *n*Rep*G* together with a braided equivalence $Z_1(n{\rm Rep} G)\stackrel{\simeq}{\to} Z_1({\mathfrak C}),$ satisfying

Liang Kong, TL, Xiao-Gang Wen, Zhi-Hao Zhang, Hao Zheng, Classification of topological phases with finite internal symmetries in all dimensions, [arXiv:2003.08898].

K 何 ▶ K ヨ ▶ K ヨ ▶

ă.

Corollary

In particular, when $C = n \text{Rep } G$, C is an invertible phase. The autoequivalences $Z_1(n{\rm Rep} G) \stackrel{\simeq}{\rightarrow} Z_1(n{\rm Rep} G)$ that preserve the embedding $nRep G \hookrightarrow Z_1(nRep G)$, denoted by $Aut(Z_1(nRep G), nRep G)$, gives the classification of $(n + 1)D G$ SPTs.

Examples

- $(1+1)$ D SPT: $Aut(Z_1(\text{Rep}G), \text{Rep}G) = H^2(G, U(1)).$
- $(2+1)$ D SPT: $Aut(Z_1(2RepG), 2RepG) = H^3(G, U(1)).$
- The higher dimensional examples are not easy to compute. But at least we can confirm that the result will be beyond $H^{n+1}(G, U(1))$.

Liang Kong, TL, Xiao-Gang Wen, Zhi-Hao Zhang, Hao Zheng, Classification of topological phases with finite internal symmetries in all dimensions, [arXiv:2003.08898]. イロト イ伊 トイヨ トイヨ トー 重。

Higher symmetry

- For a more general higher symmetry, we may replace n Rep*G* for any symmetric higher categories \mathcal{E}_n , $n = 0, 1, 2, \ldots$, where $\mathcal{E}_n = \Omega \mathcal{E}_{n+1}$.
- There will an integer *p* such that

$$
\mathcal{E}_{n+1} = \Sigma \mathcal{E}_n, \forall n > p
$$

$$
\mathcal{E}_{p+1} \neq \Sigma \mathcal{E}_p.
$$

In other words, the $(p+1)$ D defects are elementary. Higher dimensional defects are condensation descendants. Such higher symmetry is called a *p*-symmetry. The usual global symmetry specified by a group *G* is thus a 0-symmetry.

K 何 ▶ K ヨ ▶ K ヨ ▶ ...

È. QQ

Topological phases with higher symmetry

Topological phases with higher symmetry are classified in a similar manner:

Thanks for attention!

 $\exists x \in \mathbb{R}$

ă