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1 Outline: physical interpretations of the ab-
stract mathematical notions

Category theory has become an inevitable language in the study of topological
phases. However, many complained that category theory is too abstract. To
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this end, we begin this mathematical chapter by outlining the other sections and
explaining the philosophy underneath, as well as the physical interpretations in
topological phases.

In Section 2, we introduce the basic language of category theory. The no-
tions of category, object, morphism, functor and natural transformation are
given. At this general level, we cannot provide specific interpretations to these
notions, but it should helpful to explain some categorical philosophy here. In
many examples of categories, such as the category of sets, groups, vector spaces,
or topological spaces, the objects are sets with certain additional structure, and
morphisms are maps preserving the additional structure. However, learning
category theory with these examples in mind can be harmful. One important
perspective that category theory distinguishes from set theory, is that objects
are not assumed to have any internal structures like an structured set, and all
the focus is on the morphisms, and higher analogs like functors and natural
transformations. In other words, objects are treated like black boxes; all we
learn about an object is from the morphisms, which are the relations between
objects. The “internal structure” of an object, even if there seems to be, is mere
an illusion from the knowledge on the morphisms. In fact, this philosophy is
very much like the way we perceive the physical world: all our knowledge comes
from our observations or measurements, from the interactions between “phys-
ical objects”. In “reductionism” physics, we assume that “physical objects”
have certain internal structures (consist of smaller and smaller particles) which
greatly helped simplifying our explanation of the nature. However, such funda-
mental reductionism assumption can never be justified by experiments directly,
and we do see signs of its breaking down in modern physics. Can we study the
nature without the reductionism assumption? Indeed, the categorical philoso-
phy is against reductionism from the very beginning, and category theory is the
corresponding methodology to organize knowledge without reductionism. The
power of category theory, as implied by Yoneda lemma for example, is not less
than the traditional set theoretical or reductionism approach.

In Section 3, we introduce the Yoneda lemma and universal property. This
section aims to further convey the categorical philosophy based on some solid
results; however, it should safe for readers who are interested in physical appli-
cations to skip this section.

In Section 4, we introduce a special kind of category that is relevant in the
study of topological phases, tensor category. At this stage, we can interpret
the objects as point-like excitations, or (quasi-)particles. The tensor product of
objects can be interpreted as viewing two excitations as one (fusion of particles).
Still, as explained above, the morphisms, which stands for the physical processes
(operators) of the excitations, are the only things that are observable. There is
also another important assumption, “rigidity”, that objects have dual objects,
which physically means that particles should always have antiparticles.

In Section 5, we describe the graphical methods to compute the relations
of morphisms. Physically, these graphs can be viewed as the world lines that
describe the evolution processes of the particles.

In Section 6, we thoroughly introduce the theory of unitary fusion category.
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They are more refined a subclass of rigid tensor category. The unitary structure
is a physical assumption that corresponds to reflection positivity. The name
“fusion” is short for several assumptions, which makes it possible for us to
choose a finite basis of the graphical calculus, and explicitly express the physical
data encoded in the abstract categorical language. Physically, a unitary fusion
category describes the quasiparticles on the gapped 1+1D boundary of a 2+1D
topological ordered phase. But interestingly, due to the boundary-bulk duality
of topological phases, the same unitary fusion category can also be used to
construct the 2+1D bulk topological order. More precisely, the graphs of the
unitary fusion category, on one hand can be understood as the world lines of
boundary quasiparticles, on the other hand can be understood as the ground
state wavefunction of the bulk topological order.

In Section 7, we introduce the theory of module category over tensor cate-
gory. The graph involving a module category can be understood as the ground
state wavefunction of a gapped boundary (or a gapped domain wall for a bi-
module category), and the functors between module categories correspond to
excitations on the boundary. Indeed the module functors form a unitary fusion
category that is Morita equivalent to the one used to construct bulk wave-
function, which established the boundary-bulk duality. This section focus on
introducing concepts and pictures instead of mathematical details.

In Section 8, we compute in detail the example of module categories over
Rep(Zn), which helps understanding the general concepts introduced in Sec-
tion 7. This is the categorical treatment of the boundary theory of Zn string-net
model.

In Section 9, we add an additional structure “braiding” to unitary fusion
category. The resulting unitary braided fusion category are now able to describe
quasiparticles in 2+1D topological orders. They are also referred to as “anyon
models”. We also explain how unitary braided fusion categories are used to
describe topological phases with symmetries.

In Section 10, we introduce the theory of algebras in tensor category. They
are directly related to the physics of (self-bosonic) anyon condensation, as well
as the corresponding boundary and domain wall theory. On the other hand,
they are very useful in various constructions in tensor category theory and a
must to know.

In Section 11, we apply the above knowledge and discuss the stacking of
topological phases in terms of categorical language.

2 Some Basic Language of Category Theory

Definition 2.1 (Category). A category C has the following data:

1. Objects A,B,C, · · · . The collection of all objects is denoted by Ob(C)
(A ∈ C is short for A ∈ Ob(C)).

2. Morphisms f, g, · · · between each ordered pair (A,B), denoted by f : A→
B or A

f−→ B. The collection of all morphisms from A to B is denoted by
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Hom(A,B).

3. For each triple (A,B,C), and morphism f : A→ B and g : B → C, there
exists a unique morphism gf : A→ C, called the composition of f and g.

4. For each object A, a morphism idA ∈ Hom(A,A), called the identity
morphism.

They satisfy

1. Associativity: (hg)f = h(gf).

2. Identity morphisms are the units of composition: ∀f ∈ Hom(A,B), f =
idB f = f idA.

Remark 1. Note that our definition of category does not rely on set theory.
But for applications it is convenient to consider set theoretic models. A category
C is called small if Ob(C) and Hom(A,B) are sets. For small categories, we can
safely use set theoretic structures such as Cartesian product, subset, function or
map, and so on. It worth noting that the category of sets, Set, whose objects
are sets and morphisms are functions, is not small, because the collection of all
sets is no longer a set. However, unless explicitly specified, in this book we only
deal with small categories.

A morphism f ∈ Hom(A,B) is called an isomorphism if it is invertible, i.e.
∃g ∈ Hom(B,A) such that fg = idB , gf = idA, and g is denoted by f−1.
Two objects A,B are called isomorphic, denoted by A ∼= B, if there exists an
isomorphism between them.

Sometimes we will consider the subcategory of a given category. Note that
there are two levels of structure; we can take subsets of both objects and mor-
phisms. To be precise, by a full subcategory B of C, we mean taking a subset
of objects Ob(B) ⊂ Ob(C) but all the morphisms HomB(X,Y ) = HomC(X,Y ).

Definition 2.2 (Functor). A functor F between two categories C,D is given by

1. An object map

Ob(C) → Ob(D)
A 7→ F (A),

2. Morphism maps

Hom(A,B) → Hom(F (A), F (B))

f 7→ F (f),

satisfying

1. F (gf) = F (g)F (f).

2. F (idA) = idF (A).
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There is an identity functor idC : C → C for any category C, whose object
map and morphism maps are both identity idC(A) = A, idC(f) = f .

Definition 2.3 (Natural Transformation). A natural transformation ν : F ⇒ G
between two functors F,G : C → D is given by a collection of morphisms
νA ∈ Hom(F (A), G(A)) for each object A ∈ C such that ∀f ∈ Hom(A,B)

G(f)νA = νBF (f). (1)

In category theory, such condition is more commonly expressed in terms of the
commutative digram

F (A)
νA
//

F (f)

��

G(A)

G(f)

��

F (B)
νB

// G(B)

. (2)

We will call such diagram as the natural square.

All the functors between two categories C,D form a category Fun(C,D),
whose objects are functors and morphisms are natural transformations. The
composition of natural transformations ν, τ is given by (τν)A = τAνA. The
morphisms νA of the natural transformation ν are also called functorial. If ν
is an isomorphism in the category Fun(C,D), then all its components νA are
isomorphisms. In this case ν is called a natural isomorphism, and by abuse of
notation, its components νA are also called natural isomorphisms.

One may define two categories to be isomorphic by the existence of invert-
ible functors between them. However, this notion is too strict and not practical
in many applications. The reason behind is the “higher morphisms” – natu-
ral transformations – between functors. We instead need the following weaker
notion:

Definition 2.4 (Equivalence of category). Two categories C,D are called equiv-
alent (C ≃ D) if there exist two functors F : C → D, G : D → C such that
GF ∼= idC , FG ∼= idD as objects of Fun(C, C),Fun(D,D).

3 Yoneda Lemma and Universal Property

This is an optional section for interested readers. In this section we intro-
duce some basic constructions and results in category theory. For the moment,
the contents in this section are not directly relevant to physical applications.
However, this section illustrates the philosophy of category theory; the authors
believe that the “categorical way of thinking” is beneficial for understanding
the following sections.
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3.1 Yoneda Lemma

Think about a fundamental question: In real world, how do we learn about
something new? As the first step, we give the new thing a name, no matter
meaningful or meaningless. Without loss of generality, let’s say the name is
“A”. Next, we may use everything that we already have but we may or may
not know very well, to test A, or interact with A. In reality, such process is
nothing but experiment. Finally, our knowledge of A is concluded form these
experiments, which in turn give the name A its meaning.

Categorically, the above thinking says that the abstract object A is in fact
defined by Hom(A,−), where − stands for an arbitrary object (everything we
have) and Hom(A,−) is how A interacts with everything we have (all the in-
formation we can learn from our experiments). Yoneda lemma and Yoneda
embedding are just the rigorous and precise statements of the above simple
thinking.

Given a category C and an object A ∈ C, Hom(A,−) is in fact a functor
from C to Set, the category of sets, whose objects are sets and morphisms are
maps between sets. The object and morphism maps of Hom(A,−) are

X ∈ C 7→ Hom(A,X) ∈ Set,

(f : X → Y ) 7→ (Hom(A, f) : Hom(A,X)→ Hom(A, Y )) ,

where Hom(A, f) is naturally given by composition from the left (push-forward)

Hom(A, f) : Hom(A,X)→ Hom(A, Y ),

(x : A→ X) 7→ (fx : A→ X → Y ) .

Hom(A,−) is called the (co-variant) hom-functor. Dually, we can define a
contra-variant hom-functor Hom(−, A):

X 7→ Hom(X,A),

(f : X → Y ) 7→
(

Hom(f,A) : Hom(Y,A) → Hom(X,A)
(y : Y → A) 7→ (yf : X → Y → A)

)
.

Note that the morphism map reverses the direction of the arrow, which is why
the functor is called contra-variant. It is not a difficult observation, that for any
categorical statement, one can reverse the directions of all arrows and obtain a
dual statement. The dual statement has the same authenticity as the original
one. Formally, for any category C, we can define a dual category Cop whose
objects are the same as C while all morphisms are reversed HomCop(A,B) =
HomC(B,A). Thus, a contra-variant functor from C to D is nothing but a
functor from Cop to D.

We are now ready to state the Yoneda lemma,

Lemma 3.1 (Yoneda lemma). For a category C, a functor F : C → Set, and
an object A ∈ C, let Nat(Hom(A,−), F ) be the set of natural transformations
from Hom(A,−) to F . Nat(Hom(A,−), F ) is in bijection with F (A). Dually,
for a functor G : Cop → Set, Nat(Hom(−, A), G) is in bijection with G(A).
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Proof. Let ν : Hom(A,−) ⇒ F be a natural transformation and f : A → X a
morphism. Consider the natural square

Hom(A,A)
νA

//

Hom(A,f)

��

F (A)

F (f)

��

Hom(A,X)
νX

// F (X)

(3)

Pick a special element idA ∈ Hom(A,A) and check its image

idA ∈ Hom(A,A)
� νA

//

_

Hom(A,f)

��

u ≡ νA(idA) ∈ F (A)
_

F (f)

��

f idA = f ∈ Hom(A,X) �
νX

// νX(f) = F (f)(u) ∈ F (X)

(4)

We see that ν is uniquely determined by the image of idA under νA. Therefore,
the bijection between Nat(Hom(A,−), F ) and F (A) is given by

Nat(Hom(A,−), F ) ⇌ F (A),

ν 7→ νA(idA),

νX(f) = F (f)(u) 7→u.

The dual case is similarly proven.

Take G = Hom(−, B) in the above, we see that

Nat(Hom(−, A),Hom(−, B)) ∼= Hom(A,B). (5)

In fact, given a morphism f : A→ B, it uniquely determines a natural transfor-
mation from Hom(−, A) to Hom(−, B) by composition from the left. Thus, the
contra-variant hom-functor defines a functor from C to the category of functors
Fun(Cop,Set) which is fully faithful, namely the morphism maps are bijections.
In other words, C can be viewed as a full subcategory of Fun(Cop,Set).

Corollary 3.2 (Yoneda embedding). Denote contra-variant hom-functor by

Y : C → Fun(Cop,Set),
A 7→ Y (A) ≡ Hom(−, A),

(f : A→ B) 7→ Y (f) =

{
Y (f)X : Hom(X,A) → Hom(X,B)

(g : X → A) 7→ (fg : X → A→ B)

}
Y is fully faithful. Dually, the co-variant hom-functor also gives a fully faithful
functor Cop ↪→ Fun(C,Set).

Exercise 3.1. Check that the morphism map of the Yoneda embedding is
indeed the bijection in the Yoneda lemma.
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Exercise 3.2. The bijection Nat(Hom(A,−), F ) ∼= F (A) in the Yoneda Lemma
is further “natural” in A and F , by viewing Nat(Hom(A,−), F ) and F (A) as
two functors from Cop × Fun(C,Set) to Set:

1. The object maps are just Nat(Hom(A,−), F ) and F (A). Figure out the
morphism maps.

2. Write down the corresponding natural squares and prove that they com-
mute.

In a less formal but more philosophical sentence, the Yoneda embedding
means that all the information of an abstract category C is encoded in the
concrete hom-sets Hom(A,B) for arbitrary A,B ∈ C. An object A is concretely
realized as Hom(−, A) or Hom(A,−), namely all it relations to the others; an
abstract morphism f : A → B is concretely realized as a collection of maps
from Hom(−, A) to Hom(−, B) or from Hom(B,−) to Hom(A,−), namely how
relations to A are carried over to relations to B.

We conclude the philosophy reflected in this section in the following:
The relation (morphism) is all.

3.2 Universal Property

Recall that in set theory, we often specify a subset of U by certain property Q
of the elements

{x ∈ U |x satisfies Q}.

Though usually not mentioned explicitly, the above means the subset of all
elements satisfying Q; in other words, the above means the largest subset whose
elements satisfy Q.

In category theory, we also need to specify the extreme (largest, smallest
or in other appropriate senses) notion satisfying certain properties. The cor-
responding formulation is known as universal property, which is probably the
most important notion in category theory. Almost every good mathematical
notion, such as product, sum, center and so on, can be reformulated in category
theory as certain type of universal property.

We begin with the simplest case

Definition 3.1. An object T in C is called terminal object if for any object A,
there exists a unique morphism from A to T , namely Hom(A, T ) has exactly
one element. Dually, an object S in C is called initial object if for any object A,
there exists a unique morphism from S to A.

Terminal and initial objects may not exist; if exist, they are unique up to
unique isomorphisms.

Example 3.1. In the category of sets, Set, the initial object is the empty set
∅ (the unique map ∅ → A to any set A is the empty map). Any set with only
one element is a terminal object.
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We now give the most general formulation of universal property. Say the
notion we want to define is in some working category C. To specify the property
we are interested in, we usually consider some diagrams of morphisms in C.
Note that a diagram is nothing but some indexed objects and morphisms put
together in some organized way. Formally, we describe a diagram by a functor
F : J → C where J is an indexing category whose objects and morphisms are
organized the same way as the diagram, and the functor F picks out the indexed
objects and morphisms in C. Then the universal property can be thought of as
the part of another diagram G : K → C that is closest to or farthest from
F : J → C. Rigorously, we take the terminal or initial object in the following
auxiliary category

Definition 3.2. Given two functors F : J → C and G : K → C, the comma
category (F ↓ G) is as the following

� Objects are triples (j ∈ J , k ∈ K, α : F (j)→ G(k)).

� Morphisms from (j1, k1, α1) to (j2, k2, α2) are pairs (f : j1 → j2, g : k1 →
k2) such that the following diagram commutes.

F (j1)
α1
//

F (f)

��

G(k1)

G(g)

��

F (j2)
α2
// G(k2)

(6)

The composition of morphism is pairwise.

Definition 3.3 (Universal property). A notion is of universal property if it is
defined as, or corresponds to the terminal or initial object in appropriate comma
category.

Example 3.2. Let ∅ denote the empty category. There is a unique functor
∅ → C, namely the empty functor. We have C = (idC ↓ ∅ → C) = (∅ → C ↓
idC). Thus terminal and initial objects themselves are universal.

Example 3.3. Denote by ∗ the category with only one object ∗ and only
identity morphism id∗. An object x of C can be identified with a functor x :
∗ → C which maps ∗ to x and id∗ to idx. For a diagram F : J → C, consider the
terminal object in (F ↓ x), which is (c, ∗, α). For any object (i, ∗, β) in (F ↓ x)
there exists a unique morphism β̄ : i→ c such that β = αF (β̄)

F (c)
α
// x

F (i)

∃!F (β̄)

OO

β

>>
(7)

We see that F (c) is the “closest” to x in diagram F . The morphism α : F (c)→ x
is called a universal morphism. Any morphism β : F (i)→ x factors through α.
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Dually, the initial object in (x ↓ F ) also gives a universal morphism that any
morphism x→ F (i) factors through.

In particular, the identity morphism idx is universal; it is both the terminal
object in (idC ↓ x) and the initial object in (x ↓ idC). The above is also true for
any isomorphism x ∼= y.

Another widely used application of universal property is the limit and colimit
of certain diagram F : J → C. For this purpose we like to work in the category
of diagrams of shape J , namely Fun(J , C). F is an object in Fun(J , C), and
by abuse of notation we write F : ∗ → Fun(J , C) as in Example 3.3. Denote
by ∆(x) : J → C the constant functor that maps all objects in J to x ∈ C
and all morphisms in J to idx. Intuitively, one can think that ∆(x) shrinks the
diagrams of shape J to a single point x. A morphism f : x→ y gives a natural
transformation ∆(f) : ∆(x) ⇒ ∆(y) by ∆(f)i = f, ∀i ∈ J . We then have the
diagonal functor ∆ : C → Fun(J , C) which maps object x to constant functor
∆(x) and maps morphism f to ∆(f).

Definition 3.4 (Limit and colimit). The limit of a diagram F : J → C is the
terminal object in the comma category (∆ ↓ F ). Dually, the colimit of F is the
initial object in the comma category (F ↓ ∆).

Let’s unpack the above definition of limit. An object in (∆ ↓ F ) is in fact
an object x ∈ C with a natural transformation ∆(x)⇒ F , which amounts to a
collection of morphisms fi : x→ F (i), i ∈ J satisfying the following commuting
diagram

x
fi

}}

fj

!!

F (i)
F (f)

// F (j)

(8)

If we imagine that F : J → C is a diagram in the plane and x is a point above
the plane, (8) has the shape of a cone. Thus, (∆ ↓ F ) is also called the category
of cones over F . The limit of F is a universal cone αi : c→ F (i) that any cone
factors through

x

fi

��

fj

��

∃!f
��

c

αi
ww

αj
''

F (i)
F (f)

// F (j)

(9)

Dually, the colimit of F is a universal cocone αi : F (i) → c that any cocone
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factors through

F (i)
F (f)

//

αi

''

fi

��

F (j)
αj

ww

fj

��

c

∃!f

��

x

(10)

Example 3.4. For an empty diagram, namely J = ∅ the empty category and
F : ∅→ C the empty functor, we have (∆ ↓ F ) = C = (F ↓ ∆). Thus, the limit
of empty diagram ∅→ C is the terminal object. The colimit of empty diagram
∅→ C is the initial object.

Alternatively, initial and terminal objects can be characterized by the fol-
lowing:

Example 3.5. The limit of idC is the initial object and the colimit of idC is
the terminal object.

It is convenient to name the (co-)limit of diagrams of some special shape J :

Definition 3.5. Let J be a discrete category, i.e., there are no other morphisms
than the identity ones. The (co-)limit of F : J → C is called the (co-)product.

Definition 3.6. Let J = • ⇒ •, i.e., a category with two objects and two
parallel morphisms besides the identity ones. The (co-)limit of F : J → C is
called the (co-)equalizer.

Definition 3.7. Let J = • → • ← •. The limit of F : J → C is called the
pullback. Dually, for J = • ← • → •, the colimit of F : J → C is called the
pushout.

Remark 2. The category of categories, Cat, has categories as objects and
functors as morphisms. However, Cat is in fact a (strict) 2-category, since
there are 2-morphisms between functors, namely the natural transformations.
In a 2-category there is similarly a notion of 2-limit. The only difference from
limit in category is that for every commuting diagram one needs to specify a
2-morphism: the diagram commutes up to the specified 2-morphism. In this
sense, the notion of comma category defined in this section, is the 2-pullback

of the diagram J F−→ C G←− K, thus of universal property. We leave it for the
interested readers as a long term exercise that almost every good construction
in mathematics is universal.

It is important to know if certain limit exists or not in a given category. We
give a theorem about this issue without proof.

Definition 3.8. A category C is called (finitely) (co-)complete if the (co-)limit
of any (finite) diagram F : J → C exists.
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Theorem 3.3. A category C is (finitely) (co-)complete if all (finite) (co-)products
and (co-)equalizers exist in C.

Example 3.6. In the category of sets, Set, the product is just the Cartesian
product. The equalizer of two maps f, g : A → B is the subset {x ∈ A|f(x) =
g(x)} with the inclusion map. The coproduct is the disjoint union. The co-
equalizer is the quotient set. Therefore, Set is complete and cocomplete.

Example 3.7. In the category of finite dimensional vector spaces, Vec, the
finite product and finite coproduct coincide, which is the direct sum. Given
two linear maps f, g : A → B, their equalizer is ker(f − g) and coequalizer is
B/im(f − g). Therefore, Vec is finitely complete and finitely cocomplete.

4 Rigid Tensor Category

Let C be a category. C×C is also a category, whose objects are Ob(C)×Ob(C) and
morphisms are Hom((A,B), (C,D)) = Hom(A,C)×Hom(B,D), and id(A,B) =
(idA, idB), (f, f

′)(g, g′) = (fg, f ′g′).

Definition 4.1 (Tensor Category). A tensor category (or monoidal category)
is a category C equipped with

1. A ⊗ functor

⊗ : C × C → C
(A,B) 7→ A⊗B

(f, g) 7→ f ⊗ g,

2. Associator: a natural isomorphism

α : ⊗(⊗× idC)⇒ ⊗(idC ×⊗),

(C × C)× C

⊗×idC

��

C × (C × C)

idC ×⊗
��

C × C

⊗
((

α
+3

C × C

⊗
vvC

which consists of αA,B,C : (A⊗B)⊗ C → A⊗ (B ⊗ C) for A,B,C ∈ C,

3. A unit object 1 ∈ Ob(C), together with two natural isomorphisms

λ : 1⊗− ⇒ idC , ρ : −⊗ 1⇒ idC ,

(Here the functor 1⊗− is understood as 1⊗−(A) = 1⊗A, 1⊗−(f) =
id1⊗f , and similar for − ⊗ 1) whose components are λA : 1 ⊗ A → A,
ρA : A⊗ 1→ A for each A ∈ C,
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satisfying

1. Pentagon equations: ∀A,B,C,D ∈ C the diagram

((A⊗B)⊗ C)⊗D
αA,B,C⊗idD

//

αA⊗B,C,D

��

(A⊗ (B ⊗ C))⊗D

αA,B⊗C,D

��

(A⊗B)⊗ (C ⊗D)

αA,B,C⊗D
))

A⊗ ((B ⊗ C)⊗D)

idA ⊗αB,C,D
uu

A⊗ (B ⊗ (C ⊗D))

(11)
commutes.

2. Triangle equations: ∀A,B ∈ C the diagram

(A⊗ 1)⊗B
αA,1,B

//

ρA⊗idB
&&

A⊗ (1⊗B)

idA ⊗λB
xx

A⊗B

(12)

commutes.

Exercise 4.1. Try to unpack Definition 4.1 with the definitions of functor and
natural isomorphisms.

Answer:

1. ⊗ is a functor, thus

⊗((f ′, g′)(f, g)) = ⊗((f ′, g′))⊗ ((f, g)), ⊗(id(A,B)) = id⊗((A,B)) . (13)

Namely,

f ′f ⊗ g′g = (f ′ ⊗ g′)(f ⊗ g), idA⊗ idB = idA⊗B . (14)

2. α is a natural isomorphism, thus

� αA,B,C are isomorphisms, i.e., invertible.

� For any f ∈ Hom(A,A′), g ∈ Hom(B,B′), h ∈ Hom(C,C ′) the dia-
gram

(A⊗B)⊗ C
αA,B,C

//

(f⊗g)⊗h

��

A⊗ (B ⊗ C)

f⊗(g⊗h)

��

(A′ ⊗B′)⊗ C ′ αA′,B′,C′
// A′ ⊗ (B′ ⊗ C ′)

(15)

commutes.
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3. λ, ρ are natural isomorphisms, thus

� λA, ρA are isomorphisms, i.e., invertible.

� For any f ∈ Hom(A,A′) the diagrams

1⊗A
λA

//

id1 ⊗f

��

A

f

��

1⊗A′ λA′
// A′

(16)

A⊗ 1
ρA

//

f⊗id1

��

A

f

��

A′ ⊗ 1
ρA′

// A′

(17)

commute.

Remark 3. Many statements in category theory are made in a similar compact
way. Remember not to overlook them and unpack like the above if necessary.

Exercise 4.2. For convenience, let us denote the commutative diagrams (11)
by PenA,B,C,D and (12) by TriA,1,B . The edge morphisms in Pen−,−,−,− and
Tri−,−,− are constructed with associativity and unit isomorphisms. Draw Tri1,A,B

and TriA,B,1. Show that they also commute.

Tips: Take TriA,B,1 as an example:

(A⊗B)⊗ 1
αA,B,1

//

ρA⊗B
&&

A⊗ (B ⊗ 1)

idA ⊗ρB
xx

A⊗B

(18)

1. Draw PenA,B,1,1.

2. Put (A⊗B)⊗ 1 and A⊗ (B ⊗ 1) inside the pentagon.

3. Connect objects with appropriate morphisms. You will find that the pen-
tagon consists of TriA⊗B,1,1, TriA,B,1 ⊗ 1, A ⊗ TriB,1,1, and two natural
squares of α.

4. The commutativity of TriA,B,1 ⊗ 1 is then implied by the commutativity
of PenA,B,1,1, TriA⊗B,1,1, TriB,1,1, and the natural squares.

5. TriA,B,1 can be built from TriA,B,1 ⊗ 1 and three natural squares of ρ.
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Definition 4.2 (Rigidity). A left dual to object A ∈ C is a triple (A∗, bA, eA),
an object A∗ with two morphisms bA : 1→ A⊗A∗, eA : A∗ ⊗A→ 1 such that
the diagrams

(A⊗A∗)⊗A
αA,A∗,A

// A⊗ (A∗ ⊗A)

idA ⊗eA

��

A∗ ⊗ (A⊗A∗)
α−1

A∗,A,A∗
// (A∗ ⊗A)⊗A∗

eA⊗idA∗

��

1⊗A

bA⊗idA

OO

A⊗ 1

ρA

��

A∗ ⊗ 1

idA∗ ⊗bA

OO

1⊗A∗

λA∗

��

A

λ−1
A

OO

idA
// A A∗

ρ−1
A∗

OO

idA∗
// A∗

(19)
commute. A right dual (∗A, b′A, e

′
A) is similarly defined. Note that (A, bA, eA)

is right dual to A∗. Dual object is unique up to isomorphism. Tensor category
C is called rigid if every object in C has left and right duals.

The diagrams (19) seems a bit complicated, however, the nature of this def-
inition is very clear via the tricks of graphical calculus of tensor categories. The
main idea is to express morphisms with string graphs, instead of commutative
diagrams. And even more important, graphical calculus is, more or less, the
picture of string-net model. The conventions of graphical calculus vary from
people to people and we need to fix them. The following listed conventions
can be used for general tensor categories. Later this chapter, we will introduce
a better-looking convention that makes use of the nice properties of unitary
fusion categories, which agrees with the convention in most string-net model
literature. However, although that convention looks better, there are tricky
ambiguity arising for special unitary fusion categories.

5 Graphical Calculus for Tensor Categories

First, we fix our convention for graphical calculus:

1. Identity morphisms are drawn as vertical lines with labels. In particular,
id1 is drawn as a dashed line, or simply omitted.

A = idA, = id1 . (20)

2. Compose morphisms from bottom to top. For example, say f ∈ Hom(A,B), g ∈

15



Hom(B,C),

f
A

B

= idB f idA = f,
f
A

g

B

C

= gf. (21)

3. Take tensor product ⊗ for juxtaposed morphisms. Because of the co-
herence axioms (pentagon and triangle equations), the unit 1 and the
canonical isomorphisms α, λ, ρ are implicit in graphical calculus. For ex-
ample

f

A

g

B

CE

F

= (idA⊗g)αA,B,C(f ⊗ idC) ∈ Hom(E ⊗ C,A⊗ F ).

(22)

Next, we show the power of graphical calculus by studying some properties
of dual objects. We use the following graphs for bA, eA in Definition 4.2

A A∗ = bA ∈ Hom(1, A⊗A∗), A∗ A = eA ∈ Hom(A∗ ⊗A,1).

(23)

Now we can rewrite the diagrams (19) in terms of graphs, i.e.

A

A∗

A

= A ,
A∗

A

A∗

= A∗ . (24)

Thus, rigidity simply means that strings can be bend over. With this trick one
can easily find B∗ ⊗A∗ with

bA⊗B =

A B A∗B∗

, eA⊗B =

B∗ A∗ BA

. (25)

is left dual to A⊗B.
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Theorem 5.1. Let (A∗, bA, eA) be a left dual to A. ∀B,C ∈ C, the following
Hom-sets are isomorphic

Hom(B ⊗A,C) ∼= Hom(B,C ⊗A∗),

Hom(B,A⊗ C) ∼= Hom(A∗ ⊗B,C).

Proof. The first isomorphism maps

Hom(B ⊗A,C) → Hom(B,C ⊗A∗)

f
B A

C

7→ f
B A

A∗C

,

Hom(B,C ⊗A∗) → Hom(B ⊗A,C)

f
C A∗

B

7→ f
C A∗

AB

.

It is easy to check the two maps cancel each other. The second isomorphism
maps are similar. Also, we have similar theorems for right duals.

Corollary 5.2. We have

Hom(A,B) ∼= Hom(1, B ⊗A∗) ∼= Hom(B∗ ⊗A,1) ∼= Hom(B∗, A∗).

The following map ∗ is an isomorphism

∗ : Hom(A,B)→ Hom(B∗, A∗)

f = f
A

B

7→ f∗ =
B∗

f

B

A

A∗

For a rigid category C, ∗ further extends to a monoidal equivalence functor
Crev → Cop, where Crev denote the same category as C but with reversed tensor
product, A⊗rev B := B ⊗A.
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6 Unitary Fusion Category

From now on we will assume that the category C is a C-linear category, i.e.
Hom-sets of C are C-vector spaces and composition maps of C are C-bilinear;
the ⊗ is also C-bilinear if C is a tensor category. We have the following “direct
sum” construction which generalizes direct sum of vector spaces in terms of
more general categorical language. It may be the most useful structure for a
physicist, since it allows us to choose bases and express the abstract categorical
notions in terms of matrices and tensors.

Definition 6.1 (Direct sum). An object A ∈ C is the direct sum of n ob-
jects A1, A2, ..., An ∈ C if there exist 2n morphisms pa ∈ Hom(A,Aa), qa ∈
Hom(Aa, A), a = 1, · · · , n, satisfying

paqb = δab idAa
,

n∑
a=1

qapa = idA . (26)

We denote the direct sum by A = ⊕n
a=1Aa, and the pa, qa morphisms are called

(direct sum) decomposition morphisms, or more precisely, pa as projection mor-
phisms and qa as embedding morphisms. One can check that the direct sum is
both the product and the coproduct, thus it may also be called a biproduct. As
limit and colimit, direct sum is unique up to unique isomorphism.

Each f ∈ Hom(A,B) uniquely determines n morphisms

fa = fqa ∈ Hom(Aa, B)

such that f =
∑n

a=1 fapa, and vice versa, fa uniquely determined f . There
are similar decompositions for morphisms in Hom(B,A). In particular, pa, qa
themselves are the decomposition of idA. If B also admits a direct sum de-
composition B = ⊕m

b=1Bb, ub ∈ Hom(B,Bb), wb ∈ Hom(Bb, B), b = 1, · · · ,m,
satisfying

uawb = δab idBa
,

m∑
b=1

wbub = idB , (27)

we can even represent f ∈ Hom(A,B) by a “matrix”:

fba = ubfqa ∈ Hom(Aa, Bb), f =
∑
ab

wbfbapa, (28)

such that composition of morphisms is “matrix” multiplication. The role of
decomposition morphisms is like that of basis vectors: qa ∼ |a⟩, pa ∼ ⟨a|.

The direct sum is automatically compatible with tensor product:

Theorem 6.1 (Distribution law). Let C be a tensor category, A,B,C ∈ C, if
A⊕B exists in C,

(A⊕B)⊗ C ∼= (A⊗ C)⊕ (B ⊗ C)

C ⊗ (A⊕B) ∼= (C ⊗A)⊕ (C ⊗B)

18



Proof. Use the following diagram to express the data of a direct sum:

A⊕B
pA

�� pB
''

A
qA

BB

B

qB
ff

It is easy to check (A⊕B)⊗C with the following morphisms is the direct sum
of A⊗ C and B ⊗ C, since we have assumed that ⊗ is C-bilinear.

(A⊕B)⊗ C
pA⊗idC

{{ pB⊗idC ))

A⊗ C
qA⊗idC

;;

B ⊗ C

qB⊗idC
hh

The proof is similar for C ⊗ (A⊕B) ∼= (C ⊗A)⊕ (C ⊗B).

Definition 6.2 (Semisimple). An object A is called simple if Hom(A,A) ∼= C.
An object is called semisimple if it is the direct sum of simple objects. A
category C is called semisimple if C admits finite direct sums and all objects in
C are semisimple.

Let A be a simple object. We denote the canonical isomorphism by

Hom(A,A) ∼= C

f 7→ |f | and | idA | = 1.

If A is simple, we have Hom(A,A) ∼= Hom(1, A ⊗ A∗) ∼= Hom(A∗ ⊗ A,1) ∼=
Hom(A∗, A∗) ∼= C, thus A∗ is also simple.

Definition 6.3 (Fusion category). A fusion category is a C-linear semisimple
rigid tensor category with finitely many isomorphism classes of simple objects
and finite dimensional Hom-spaces, and the unit 1 is simple.

For a fusion category C we will change our convention a little, using small
letters i, j, k, · · · ∈ L (L is the finite set of representing simple objects, one
from each isomorphism class) for simple objects. Any object A ∈ C is a direct

sum of simple objects, i.e. A = ⊕i∈Li
⊕NA

i and the direct sum decomposition
morphisms are denoted by pi,aA , qAi,a, i ∈ L, a = 1, · · · , NA

i

pi,aA qAj,b = δijδab idi,
∑
i∈L

NA
i∑

a=1

qAi,ap
i,a
A = idA . (29)

NA
i = dimHom(i, A) = dimHom(A, i). N i···j

k is short for NA
k if A ∼= i⊗ · · · ⊗ j.

It is intuitive to use the following graphs for the direct sum decomposition
morphisms:

� _

i

a_

A

= pi,aA , ?�

i

a_
A

= qAi,a. (30)
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Our choice of symbol is to remind the reader of the fact that these morphisms
serve as the “basis” of A (rotate the graph by 90◦ anticlockwise). They satisfy
similar orthonormal and complete conditions:

� �

i

a�
A
∼ ⟨i, a|, _?

i

a�
A

∼ |a, i⟩, (31)

� �

i

a�
A
_?

j

b� ∼ ⟨i, a|b, j⟩ = δijδab, (32)∑
ia

� �

i

a�
A

_?
a�

A
∼
∑
ia

|a, i⟩⟨i, a| = idA . (33)

The only subtle part is that the tensor product and braiding involving nontrivial
i is different from usual intuitions from vector spaces, which will be explained
below.

The data such as tensor product, associator, rigidity of a fusion category C
can be expressed in terms of simple objects. First, the decomposition of the
tensor product i⊗ j:

i j =
∑
k∈L

Nij
k∑

a=1

?�

a

a

k

_

� __
i j

i j

. (34)

It is easy to see N1i
j = N i1

j = δij , and it is convenient to take the corresponding

decomposition morphisms as pi,11i = λi, q
1i
i,1 = λ−1

i , pi,1i1 = ρi, q
i1
i,1 = ρ−1

i .
Using Theorem 6.1, the direct sum decomposition of tensor product of more

than two objects can be expressed in terms of (34). For example, the embedding
morphisms of (i⊗ j)⊗ k are:

ji
k

?�

r

a_

?�

l

b_

. (35)

Similarly for i⊗ (j ⊗ k):

i

?�

s

c_
j k

?�

l

d_

. (36)
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Note that (35)(36) are just bases of Hom(l, (i⊗ j)⊗ k) and Hom(l, i⊗ (j ⊗ k)).
The associator isomorphism αi,j,k induces the isomorphism between the two
vector spaces, i.e.

αi,j,k

ji
k

?�

r

a_

?�

l

b_

=
∑
n,c,d

F ijk
l,scd,rab

i

?�

s

c_
j k

?�

l

d_

, (37)

where F ijk
l is called the F -matrix. Here we write αi,j,k explicitly, but we will

omit it below. We also have∑
m

N ij
mNmk

l =
∑
n

N in
l N jk

n = dimHom(l, (i⊗ j)⊗ k). (38)

Exercise 6.1. Translate the pentagon equation of the associator α into that of
the F -matrix.

Lemma 6.2. For a semisimple rigid tensor category, (A∗, bA, eA) is left dual to
A. Take the direct sum decomposition morphisms of A∗ as

pi
∗,a
A∗ =

� _
i∗

a_

A∗

=
i∗

@ 

i

a_

A

A∗

= (qAi,a)
∗, qA

∗

i∗,a = ?�

i∗

a_
A∗

=
i∗

� `a

i

_

A

A∗

= (pi,aA )∗.

(39)
Then, bA, eA satisfy

bA = A A∗ =
∑
i

NA
i∑

a=1

@ _
A

>�a a

i i∗

_
A∗

, eA = A∗ A =
∑
i

NA
i∑

a=1

� `_

A

~ ^ aa

ii∗

_

A∗

(40)

Theorem 6.3. A semisimple tensor category is rigid if all the simple objects
have left and right duals.

Proof. Let A = ⊕ii
⊕NA

i . Take B = ⊕i(i
∗)⊕NA

i with decomposition morphisms

pi
∗,a
B = � _

i∗

a_

B

, qBi∗,a = ?�

i∗

a_
B

. (41)
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and define

bAB = A B =
∑
i

NA
i∑

a=1

@ _
A

>�a a

i i∗

_
B

, eBA = B A =
∑
i

NA
i∑

a=1

� `_

A

~ ^ aa

ii∗

_

B

.

(42)
Then (B, bAB , eBA) is left dual to A. Moreover, the following equations hold

pi
∗,a
B = � _

i∗

a_

B

=
i∗

@ 

i

a_

A

B

= (qAi,a)
∗, qBi∗,a = ?�

i∗

a_
B

=
i∗

� `a

i

_

A

B

= (pi,aA )∗.

(43)
It is similar to find the right dual to A.

Theorem 6.4. Let C be a semisimple category and 1 is simple. A simple object
i ∈ C has left duals if and only if there exists a simple object j, N ij

1 = N ji
1 = 1

and F iji
i,111,111 ̸= 0.

Proof. If there exists a simple object j, N ij
1 = N ji

1 = 1 and F iji
i,111,111 ̸= 0. We

can compute the following graph

� _

i

1_

i

j

i
_?� 1

_� _1

?�

i

1_

= F iji
i,111,111

� _

i

1_

_?� 1

_� _1

?�

i

1_

i j i = F iji
i,111,111 i , (44)

as well as a similar graph for (F jij
j )−1

111,111. It is an easy exercise to show that

F iji
i,111,111 = (F jij

j )−1
111,111. Then we can take

bi = (F iji
i,111,111)

−1/2qij1,1, ei = (F iji
i,111,111)

−1/2p1,1ji ,
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and (j, bi, ei) is left dual to i.
If i has a left dual i∗, recall Corollary 5.2 and we see Hom(1, i ⊗ i∗) ∼=

Hom(i∗⊗ i,1) ∼= C, thus N ii∗

1 = N i∗i
1 = 1 and the differences between bi, ei and

qii
∗

1,1, p
1,1
i∗i are just nonzero complex numbers. Use similar graphs as eq.(44), we

find F ii∗i
i,111,111 = (F i∗ii∗

i∗ )−1
111,111 ̸= 0.

Exercise 6.2. Verify F iji
i,111,111 = (F jij

j )−1
111,111 using the pentagon and triangle

equations.

The above established the compatibility between semisimpleness (direct sum)
and rigidity. In particular, we can determine if a semisimple category is rigid
by the F -matrix. Next, we discuss the unitary structure.

Definition 6.4 (Unitarity). C-linear category C is called a †-category if for each
Hom-space there is an antilinear map

† : Hom(A,B) → Hom(B,A)

f 7→ f†

such that

id†A = idA, (45)

(gf)† = f†g†, f†† = f. (46)

A morphism f in a †-category is called unitary if f† = f−1, and Hermitian if
f† = f .

A unitary fusion category (UFC) C is a fusion †-category satisfying:

1. Positive-definite: for any object A and simple object i, f ∈ Hom(i, A) and
f ̸= 0,

|f†f | > 0. (47)

2. † is compatible with tensor product:

(f ⊗ g)† = f† ⊗ g†. (48)

3. The associativity and unit isomorphisms are unitary:

α†
A,B,C = α−1

A,B,C , λ†
A = λ−1

A , ρ†A = ρ−1
A . (49)

Remark 4. As an intuitive example to explain why we use the symbol †,
consider the category Hilb whose objects are finite dimensional Hilbert spaces
and morphisms are linear operators (or usual complex matrices if you prefer to
work with a chosen basis). Hilb is a unitary fusion category, whose † is just the
usual Hermitian conjugate.
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The following establishes the compatibility between unitarity and semisim-
pleness.

Theorem 6.5. For a unitary fusion category, one can always choose the de-
composition of object A as

� _

i

a_

A

= pi,aA = (qAi,a)
† =

 ?�

i

a_
A


†

, (50)

which we call an orthonormal decomposition.

Proof. Suppose that we have a decomposition pi,aA , qAi,a (may not satify the con-

dition in the theorem). Note that qAi,a form a basis of Hom(i, A), and (pi,aA )† can

be expressed in terms of qAi,a,

(pi,aA )† =
∑
b

Pabq
A
i,b. (51)

This is, in general, how the unitarity data is expressed in terms of simple objects.
It is not as important as F,R-matrices since it can be made trivial simply by
change of basis.

Using the properties of decomposition morphisms (29),

Pab idi = pi,bA (pi,aA )†. (52)

Thus

Pab idi = (Pab idi)
† = (pi,bA (pi,aA )†)† = pi,aA (pi,bA )† = Pba idi, (53)

namely P is a Hermitian matrix, P † = P . Suppose that P is diagonized by
unitary matrix U , (U†PU)ab = λaδab,

λa idi =
∑
b

Ubap
i,c
A (pi,bA )†Uca =

(∑
b

Ubap
i,b
A

)(∑
b

Ubap
i,b
A

)†

, (54)

by (47), we know that λa > 0, namely P is positive definite.
We seek for different bases:

ui,a
A =

∑
b

Xabp
i,b
A , wA

i,a =
∑
b

Wabq
A
i,b. (55)

Such that they are still decomposition mophisms

δab idi = ui,a
A wA

i,b =
∑
c

XacWbc idi, (56)

idA =
∑
i

∑
a

wA
i,bu

i,a
A =

∑
i

∑
bc

∑
a

WabXacq
A
i,bp

i,c
A . (57)
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Therefore, we need

W−1 = XT . (58)

Thus qi,b =
∑

d Xdbw
A
i,d, and we have

(ui,a
A )† =

∑
bcd

XacPcbXdbw
A
i,d =

∑
b

(XPXT )abw
A
i,b. (59)

Therefore, taking Xab = λ
−1/2
a Uba will make the new bases ui,a

A , wA
i,a satisfy the

conditions in the theorem. Such choice of decomposition morphisms will always
be assumed below.

After fixing decompositions pi,aA , we can represent a morphism f ∈ Hom(A,B)
by a block-diagonal matrix

fi,ba = |pi,bB f(pi,aA )†|, f =
∑
iab

fi,ba(p
i,b
B )†pi,aA , (60)

where the simple object i labels the block. Then composition of morphisms is
simply matrix multiplication, and † is taking Hermitian conjugate. In particular,
we have

Corollary 6.6. In a unitary fusion category, if a morphism f ∈ Hom(A,B)
satisfies f†f = 0, we must have f = 0.

Remark 5. The positive-definite condition in the definition of UFC can be re-
placed by the †-definite condition: f†f = 0⇒ f = 0 together with requirement
that for any f ∈ Hom(A,B), there exists a ∈ Hom(A,A) such that f†f = a†a.

Corollary 6.7. F ijk
l is just the l-labeled block matrix of morphism αi,j,k :

(i⊗ j)⊗ k → i⊗ (j ⊗ k),

F ijk
l,scd,rab = (αi,j,k)l,scdrab =

∣∣∣pl,dis (idi⊗ps,cjk )αi,j,k(p
r,a
ij ⊗ idk)

†(pl,brk)
†
∣∣∣ , (61)

thus it is a unitary matrix.

Next, we discuss the interplay between unitarity and rigidity. We use the
following graphs for b†A, e

†
A,

A A∗ = b†A, A∗ A = e†A, (62)

and one can check that (A∗, e†A, b
†
A) is right dual to A by taking † map of the

graphs (24). Also (A, e†A, b
†
A) is left dual to A∗, thus A∗∗ ∼= A, and we are able

to define the trace of morphisms:
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Definition 6.5 (Quantum trace). The right and left quantum trace of f ∈
Hom(A,A) is

trR f = |b†A(f⊗idA∗)bA| = f

A

A∗

A

, trL f = |eA(idA∗ ⊗f)e†A| = f

A

A∗

A

,

(63)
where we omitted || for unit object 1 (for a closed graph).

Definition 6.6 (Spherical). A fusion category is called spherical if trL f = trR f
for any morphism f .

Note that although bA, eA must compose to idA or idA∗ , there is a degree
of freedom left: one can always scale them by the same complex number b′A =
λbA, e

′
A = λ−1eA. To fix such ambiguity, we would like to choose the following

normalization convention:

trR idA = |b†AbA| = |eAe
†
A| = trL idA = dA. (64)

The positive number dA in (64) is called the quantum dimension of object A.
This choice makes the unitary fusion category spherical, as explained in the next
theorem. Since trR idA = trL idA∗ , we see dA = dA∗ . Recall (44) we know that
di = |F ii∗i

i,111,111|−1.

Theorem 6.8. For an object A in a UFC C the following three are equivalent
(a) ∀f ∈ Hom(A,A), trR f = trL f.
(b) For the direct sum decomposition morphisms pi,aA of A
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(c) There exist decomposition morphisms of A∗
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∗,a
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i∗
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, (pi
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such that
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Proof. (b)⇔(c) Similar as in Lemma 6.2 and Theorem 6.3.

(c)⇒(a) By straightforward calculation trL f = trR f =
∑

i

∑NA
i

a=1 |p
i,a
A f(pi,aA )†|di.

This is a direct consequence of making the choice (64) for all simple objects i.
(a)⇒(b) Say
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X is an invertible matrix. Take † map
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Then consider the following graphs
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We conclude X−1 = X = X†. Moreover, for any non-zero morphism f ∈

Hom(A, i),

f

A

i

= f =
∑
a

fap
i,a
A =

∑
a

fa

A

a
� _

i

_ , (72)

we have

f

f†

i

A

A∗

A

=
∑
ab

faXabfbdi > 0. (73)

Thus X is positive definite, together with X−1 = X = X† we know that X is
identity matrix, Xab = δab.
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Corollary 6.9. If A,B both satisfy the conditions in Theorem 6.8, ∀f ∈
Hom(A,B)
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. (74)

Proof. By straightforward calculation
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Corollary 6.10. If A,B both satisfy the conditions in Theorem 6.8, A⊗B also
satisfy those conditions.

Proof.

f

A
B

A∗B∗

A
B

= f

A

A∗
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B
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B

= f

A
B

A∗B∗

A
B
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Therefore, as long as we choose structure morphisms like in Theorem 6.8(c),
the unitary fusion category is made spherical. In the followings we will drop
the subscript of quantum trace and write tr = trL = trR. The Hom spaces of a
unitary fusion category are Hilbert spaces whose inner product is given by the
trace. Assuming f, g ∈ Hom(A,B), the inner product is given by ⟨f |g⟩ ∝ tr f†g,
up to a normalization factor one can choose for convenience.

The formula (71) in the proof of Theorem 6.8 is quite useful. Taking A = j⊗k
and sum over i and a, b, we obtain a key equation for quantum dimensions di.

djdk = tr idj⊗k = j k =
∑
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=
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i di. (77)
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Since N jk
i are non-negative integers, by the Perron–Frobenius theorem, one

knows that di is the largest positive eigenvalue of the matrix N i whose entries
are (N i)jk = N ij

k .
Another application is the “rotatable vertex”. The “orthonormal” basis

vertices we have been using has a disadvantage: if one tries to rotate them, by
adding caps or cups to bend the legs, the resulting vertex is no longer normalized.
This can be seen by analyzing the following graph:
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where we express the left side in terms of the basis on the right side. By

attaching ?�

k

b_
j∗i

to the bottom, it is easily found that Xi;kj↓
ab = F kjj∗

k,111,iab.

Next we compute Xi;kj↓
ab via the following graph,
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where we have used (71) by setting A = k ⊗ j. We conclude that

Xi;kj↓
ab = F kjj∗

k,111,iab =

√
di

djdk
U i;kj↓
ab , (80)

where U i;kj↓
ab is a unitary matrix.
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Therefore, if we rescale our basis
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(
didj
dk

)1/4
ji
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a_ , (81)

the bending like in (78) will leads to only a unitary matrix. At the same time,
we like to change the graphs to be directed, to remind ourselves whether a vertex
has been rotated or not.
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a ,
oo

i = i i∗ . (82)

To avoid ambiguity, we require that all the vertices are branched : we only allow
vertices with two incoming legs and one outgoing leg or with one incoming leg
and two outgoing legs; vertices with three incoming legs or three outgoing legs
are forbidden. A rotated vertex is related to the original one (put all arrows
going upwards) in the following way:
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a , (83)
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For a single vertex, rotating leads to a unitary matrix. In most cases, such a
unitary matrix can be set to identity by properly choosing the basis. However,
sometimes we do not have enough degrees of freedom to do so. For example, if
N ii

i∗ = 1, we can only choose one vector in Hom(i⊗i, i∗) as our basis, and rotating
it as (78) must give a phase factor that is not removable by change of basis.
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Such a phase factor is thus an invariance, which is known as the Z3 Frobenius-
Shur indicator. In this case, our branched directed convention actually gives
a overcomplete basis, since a rotated vertex is just the original one times a
phase factor, but we use different graphs to represent them. However, if we are
considering a closed graph and rotating the vertices in it all together, the unitary
matrices automatically cancels each other. Therefore the branched directed
convention is very convenient for calculating closed graphs. For example,
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= · · · (all topologically equivalent graphs).
(84)

In the following we may use this branched directed convention which allows
rotation of the graphs, or the original bottom-top undirected convention which
has to be read from bottom to top. It is natural to interpret the wave function
of string-net model by graphical calculus of unitary fusion category.

Example 6.1. We now discuss an important example of unitary fusion category,
the category of representations of a finite group G, denoted by RepG. (Here the
finite condition of the group is due to the finite requirement of fusion category.
The construction below applies to general group but the resulting category may
not be finite.)

The compact definition is that RepG := Fun(BG,Hilb), where BG is the
category with only one object ⋆ and HomBG(⋆, ⋆) = G, whose composition is
defined by the multiplication of G. Now we unpack the this definition and
elaborate on the fusion structures.

The objects of RepG are pairs (V, ρ), where V is a Hilbert space (the image
of ⋆) and ρ is the map

ρ : Hom(⋆, ⋆) = G→ GL(V ) ⊂ Hom(V, V ),

g 7→ ρg ∈ Hom(V, V ),
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satisfying ρgh = ρgρh. In other words, ρ is a group homomorphism.
A morphism from (V, ρ) to (W, τ) is a linear map f : V →W satisfying the

following condition (the natural square)

∀g ∈ G, V

ρg

��

f
// W

τg

��

V
f
// W

τgf = fρg.

Morphisms in RepG are also called intertwiners, (G-)invariant tensors, or (G-
)symmetric tensors. Indeed, the graphical calculus in RepG are nothing but a
G-symmetric tensor networks.

The direct sum and semisimple structure follows from the the property that
every finite group representation is completely reducible. The tensor product of
representations is defined as follows:

(V, ρ)⊗ (W, τ) := (V ⊗W,ρ⊗ τ),

(ρ⊗ τ)g = ρg ⊗ τg.

The tensor unit is the trivial representation (C, 1), 1g = 1,∀g. The dual rep-
resentation of (V, ρ) is (V ∗ = Hom(V,C), ρ∗), (ρ∗)g = (ρg−1)∗. The unitary
structure is given by the usual Hermitian conjugate.

A well known physical exercise that involves both the direct sum and tensor
structure is the addition of angular momentum, viewed as representations of
SU(2) (although it is not finite group). One has

j1 ⊗ j2 = (j1 + j2)⊕ (j1 + j2 − 1)⊕ · · · ⊕ |j1 − j2|.

The p, q maps of the direct sum structure are encoded in the Clebsch-Gordon
coefficients or the Wigner 3j-symbols, and F ijk

l matrices are just the Wigner
6j-symbols up to proper normalization.

7 Module Category

We make cut the string-net wavefunction in half and get a boundary like

This kind of boundary wave function is described the theory of module category.

Definition 7.1 (Module category). A left module category M over a tensor
category C is given by
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1. A functor ⊗ : C ×M→M,

2. Functorial associativity and unit isomorphisms: αA,B,M : (A⊗B)⊗M →
A⊗ (B ⊗M), λM : 1⊗M →M for any A,B ∈ C,M ∈M,

Such that PenA,B,C,M and TriA,1,M commute, i.e.,

1. Pentagon equations: ∀A,B,C ∈ C,M ∈M the diagram

((A⊗B)⊗ C)⊗M
αA,B,C⊗idM

//

αA⊗B,C,M

��

(A⊗ (B ⊗ C))⊗M

αA,B⊗C,M

��

(A⊗B)⊗ (C ⊗M)

αA,B,C⊗M
**

A⊗ ((B ⊗ C)⊗M)

idA ⊗αB,C,M
uu

A⊗ (B ⊗ (C ⊗M))

(85)
commutes

2. Triangle equations: ∀A ∈ C,M ∈M the diagram

(A⊗ 1)⊗M
αA,1,M

//

ρA⊗idM
''

A⊗ (1⊗M)

idA ⊗λM
ww

A⊗M

(86)

commutes.

Definition 7.2 (Module functor). LetM and N be two left module categories
over a tensor category C. A left module functor fromM to N is a pair (F, β), a
functor F :M→N with natural isomorphisms βA,M : F (A⊗M)→ A⊗F (M),
satisfying

1. Pentagon equations: ∀A,B ∈ C,M ∈M the diagram

F ((A⊗B)⊗M)
F (αA,B,M )

//

βA⊗B,M

��

F (A⊗ (B ⊗M))

βA,B⊗M

��

(A⊗B)⊗ F (M)

αA,B,F (M)
))

A⊗ F (B ⊗M)

idA ⊗βB,M
uu

A⊗ (B ⊗ F (M))

(87)

commutes
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2. Triangle equations: ∀M ∈M the diagram

F (1⊗M)
β1,M

//

F (λM )
%%

1⊗ F (M)

λF (M)
yy

F (M)

(88)

commutes.

Right module categories and functors are similarly defined (when left/right
omitted I mean left). In particular, right C-module is the same as left Crev-
module. A natural transformation ν between two module functor (F, β) and
(F ′, β′) should satisfy the additional condition that the diagram

F (A⊗M)
νA⊗M
//

βA,M

��

F ′(A⊗M)

β′
A,M

��

A⊗ F (M)
idA ⊗νM

// A⊗ F ′(M)

(89)

commutes. Module functors between two module categoriesM,N over a tensor
category C also form a category, denoted by FunC(M,N ). We have the following
theorem:

Theorem 7.1. Let C be a tensor category and M a module category over C.
The category FunC(C,M) is equivalent toM.

Proof. We have such two functors

FunC(C,M)→M, F 7→ F (1), ν 7→ ν1,

M→ FunC(C,M), M 7→ − ⊗M, f 7→ id−⊗f.

It is easy to check that they give the equivalence FunC(C,M) ≃M.

Note that C is a module category over itself. FunC(C, C) is moreover a tensor
category (tensor product is the composition of functors, (F⊗G)(−) = F (G(−))),
and the above is also an equivalence of tensor categories FunC(C, C) ≃ Crev.
FunC(C,M) is a right module over FunC(C, C), which completely copies the
structure of M being a left module over C. Similarly, FunC(M,M) is also
a tensor category, and FunC(C,M) has a natural left module structure over
FunC(M,M), namely,M has a natural right module structure over (FunC(M,M))rev,
given by

M ⊗ F := F (M), (A⊗M)⊗ F
βA,M−−−→ A⊗ (M ⊗ F ). (90)
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This fact allows us to present module functors graphically like

F

MA

∼

M
FA

(91)

Physically, C describes the wavefunction of the left bulk, left modulesM,N , · · ·
over C describes the wavefunctions of gapped boundaries. (91) shows two ways
to interpret the graph of module functors. On one hand, FunC(M,N ) can
be viewed as a 0+1D defect on the boundary between M,N , in particular,
FunC(M,M) describes the quasiparticles on the boundary M. The following
wavefunction renormalization, based on the data of βA,M , can be performed

∼ ∼ . (92)

Intuitively, the defect/quasiparticle on the boundary absorbs a half loop of wave-
function in the left bulk. Indeed, the graph

(93)

carries a weak Hopf algebra structure[12], and module functors form modules
over it. This observation allows a finite algorithm computing the module func-
tors, i.e. the defects/quasiparticles, from the ground state wavefunction.

On the other hand, one can also interpret the graph of module functors on
the right as wavefunction of another bulk phase described by FunC(M,M) on
the right. This interpretation is more “symmetric”; we call the tensor category
FunC(M,M) dual to C with respect toM, denoted by C∨M, for which the reason
will become clear soon. First, C has a natural structure of left module functor
onM viewed as a left module over C∨M, by left action

C → FunC∨
M
(M,M), A 7→ A⊗−. (94)

And FunC∨
M
(M,M) is just the category dual to C∨M with respect toM. Indeed,

the above functor is an equivalence (to prove this in general we may need to
make some reasonable technical assumptions. For the examples we are interested
in this chapter, where C is a unitary fusion category and M is semisimple
and indecomposable, it is always true), taking dual twice gives us the original
category:

C ≃ (C∨M)∨M = FunFunC(M,M)(M,M). (95)
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Note that module functors, FunC(M,M), are roughly speaking the functors that
“communte” with the action of C, thus taking module functors is like taking the
commutants of C in Fun(M,M). The above equation is categorically “taking
double commutants”.

An easy observation is that M ≃ FunC(C,M) is simultaneously a right
module over FunC(C, C) ≃ Crev and a left module over FunC(M,M) = C∨M; in
fact, it is a bimodule

Definition 7.3 (Bimodule category). Let C, C′ be two tensor categories. A C-
C′-bimodule categoryM is simultaneously a left C-module category and a right
C′-module category, with additional functorial associativity isomorphisms

αA,M,A′ : (A⊗M)⊗A′ → A⊗ (M ⊗A′)

for all A ∈ C,M ∈ M, A′ ∈ C′, such that the PenA,B,M,A′ and PenA,M,A′,B′

diagrams commute for all A,B ∈ C, A′, B′ ∈ C′.

Definition 7.4 (Bimodule functor). Let C,D be two tensor categories, and
M,N be two C-D-bimodule categories. A bimodule functor fromM to N is a
triple (F, β, γ) such that (F, β), (F, γ) are left, right module functors respectively
and the diagram

F ((A⊗M)⊗B)
F (αM

A,M,B)
//

γA⊗M,B

��

F (A⊗ (M ⊗B))

βA,M⊗B

��

F (A⊗M)⊗B

βA,M⊗idB

��

A⊗ F (M ⊗B)

idA ⊗γM,B

��

(A⊗ F (M))⊗B
αN

A,F (M),B

// A⊗ (F (M)⊗B)

(96)

commutes for any A ∈ C,M ∈M, B ∈ D.

Similarly all the bimodule functors fromM toN form a category, denoted by
FunC|D(M,N ). Distinguished from generic bimodules,M as C∨M-Crev-bimodule
is invertible. The following definitions explain this notion:

Definition 7.5 (Balanced functor). Let M be a right C-module category, N
a left C-module category and O a linear category, a C-balanced functor from
M×N to O is a pair (□ , α), where □ is a bilinear functor

□ :M×N → O
(M,N) 7→ M □N,

and α is a natural isomorphism between functors □ (⊗× idN )→ □ (idM×⊗),
αM,C,N : (M ⊗ C)□N → M □ (C ⊗ N) such that PenM,C,C′,N , TriM,1,N dia-
grams commute for all M ∈M, N ∈ N , C, C ′ ∈ C.
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Definition 7.6 (Tensor product of module categories). Let M be a right C-
module category and N a left C-module category, the tensor product ofM and
N over C is a linear categoryM⊠CN with a C-balanced functor ⊠C :M×N →
M ⊠C N such that any C balanced functor □ :M×N → O uniquely factors
through ⊠C , i.e.

M×N
□

((

⊠C

��

M⊠C N
F

// O

(97)

where F is the unique linear functor satisfying F⊠C = □ .

Remark 6. If moreover, M is a D-C-bimodule category and N is a C-E-
bimodule category, their tensor productM⊠CN is automatically aD-E-bimodule
category.

Remark 7. Note that fusion categories can all be viewed as module categories
over Vec. In this case ⊠Vec recovers the usual Deligne tensor product, and the
subscript will be omitted. The notion of C-D-bimodule is the same as that of
C ⊠Drev-module.

Definition 7.7 (Invertible bimodule and Morita equivalence). Let C,D be ten-
sor categories, andM be C-D-bimodule. M is called invertible ifM⊠DMop ≃
C,Mop ⊠C M ≃ D as bimodules, and meanwhile C and D are called Morita
equivalent.

Remark 8. We have a tensor functor X 7→ − ⊗ X : Drev → FunC(M,M) =
C∨M. M is invertible if and only if such functor is an equivalence.[8] Therefore,
for invertible bimoduleM it suffices to considerM as C ⊠ C∨M-module.

Another more physical way to understand the special properties of M as
an invertible C∨M-Crev-bimodule is that the excitations on M is the same as
bulk excitations. First, in the module category language, we can define bulk
excitations by FunC|C(C, C), namely, view C itself as C-C-bimodule, the “trivial
defect”, and the bulk excitations are naturally excitations on the trivial defect.
It is straightforward to verify that the data of a functor F ∈ FunC|C(C, C) is
fully encoded in the object F (1) ∈ C, and the natural isomorphisms

F (1)⊗A ∼= F (1⊗A) ∼= F (A) ∼= F (A⊗ 1) ∼= A⊗ F (1). (98)

FunC|C(C, C) is equivalent to the Drinfeld center Z(C), and the above natural
isomorphisms are just the half-braidings. The notions of braiding and Drinfeld
center will be introduced later.

Second, to see that FunC∨
M⊠C(M,M) is equivalent to Z(C) = FunC|C(C, C),

note that an object in FunC∨
M⊠C(M,M) can be identified with an object in C,

via the following functor that forgets the module functor structure over C

FunC∨
M⊠C(M,M)

forget−−−→ FunC∨
M
(M,M) ≃ C. (99)

38



Recall that the equivalence is given by

C ≃ FunC∨
M
(M,M), X 7→ X ⊗−. (100)

Moreover, X ⊗− being a left C-module functor means that for any A ∈ C and
M ∈ M there is a natural isomorphism bXA,M : X ⊗ (A⊗M)→ A⊗ (X ⊗M).

Such bXA,− is a natural transformation between X ⊗ (A⊗−) ∼= (X ⊗A)⊗− and
A⊗ (X ⊗−) ∼= (A⊗X)⊗− viewed as module functors in FunC∨

M
(M,M), thus

can be identified with an isomorphism X ⊗ A ∼= A ⊗ X in C. It is in fact the
half-braiding in (98), where X corresponds to F (1). It is then straightforward
to verify FunC∨

M⊠C(M,M) ≃ Z(C) = FunC|C(C, C). Interestingly, this result is
symmetric in C and C∨M, thus FunC∨

M⊠C(M,M) ≃ Z(C) ≃ Z(C∨M). We see that
C, C∨M share the same category of excitations as the invertible bimoduleM. Note
that this only established the equivalence between Z(C) and Z(C∨M) as tensor
categories. A more careful analysis shows that the above equivalence reverses
the half braidings of Z(C) and Z(C∨M), and thus a braided equivalence Z(C) ≃
Z(C∨M). Physically, invertible bimodule categories correspond to “transparent”
defects that allow excitations to tunnel through freely.

More generally, moving quasiparticles between bulks, boundaries and defects
is captured by the following functors. Let M be a C-module category, and
F ∈ Z(C) = FunC|C(C, C), F induces a module functor LM(F ). For any M ∈
M, C ∈ C,

LM(F )(M) = F (1)⊗M, (101)

LM(F )(C ⊗M)
βC,M

// C ⊗ LM(F )(M)

F (1)⊗ (C ⊗M) // (F (1)⊗ C)⊗M // (C ⊗ F (1))⊗M // C ⊗ (F (1)⊗M)

(102)

thus (LM(F ), β) is a module functor. And ifM is a C-D-bimodule, D ∈ D,

LM(F )(M ⊗D)
γM,D
// LM(F )(M)⊗D

F (1)⊗ (M ⊗D) // (F (1)⊗M)⊗D

(103)

(LM(F ), β, γ) is a bimodule functor. Note that LM is in fact a functor from
Z(C) = FunC|C(C, C) to FunC|D(M,M). There is a similar functor RM :
Z(D) = FunD|D(D,D) → FunC|D(M,M). These functors physically describe
the excitations condensing to, or tunneling through the boundaries and de-
fects. In particular, when M is an invertible bimodule, we have Z(C) ≃
FunC|D(M,M) ≃ Z(D); LM, RM are equivalence tensor functors and the com-
position (RM)−1LM is even a braided equivalence.
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8 Examples of module category

8.1 Semisimple module categories over RepZn

Let RepZn denote the category of finite dimension representations over C of the
group Zn. RepZn is a unitary fusion category. We denote the simple objects of
RepZn by i ∈ {0, 1, 2, · · · , n− 1}. The tensor product i⊗ j = i+ j mod n; the
unit is 0; associativity and unit isomorphisms are identity.

For each factor of n, say q|n, RepZq is a module category over RepZn. To
distinguish, denote simple objects of RepZq by 0, 1, q − 1. The tensor product
i⊗ j = i+ j mod q; associativity and unit isomorphisms are identity.

LetM be a semisimple module category over RepZn. Take a simple object
M ∈M, and denote iM := i⊗M . Define rank(iM) = number of simple objects
in direct sum decomposition of iM , and we see rank((i+1)M)) = rank(1⊗iM) ≥
rank(iM). However, M ∼= 0M ∼= nM , we conclude that rank(iM) = 1, i.e. iM
is simple. Hence the fusion rules of iM are clear: for a factor of n, say q|n, there
is a set of fusion rules such that qM ∼= M and for all 0 < p < q, pM ≇ M . We
denote the submodule category {0M, 1M, · · · , (q − 1)M} by Mq, and we will
show thatMq with nontrivial associativity and unit isomorphisms is isomorphic
to RepZq as module categories over RepZn.

Let the associativity ofMq be

(i⊗ j)⊗ kM
αi,j,k
// i⊗ (j ⊗ kM) . (104)

In this section we mainly deal with simple objects, therefore we simply regard
αi,j,k as a complex number. (We omit || if not confusing)

Consider the pentagon

((i⊗ j)⊗ k)⊗ lM

αi+j,k,l

��

(i⊗ (j ⊗ k))⊗ lM

αi,j+k,l

��

(i⊗ j)⊗ (k ⊗ lM)

αi,j,k+l
))

i⊗ ((j ⊗ k)⊗ lM)

αj,k,l
uu

i⊗ (j ⊗ (k ⊗ lM))

(105)

Thus we have
αi+j,k,lαi,j,k+l = αi,j+k,lαj,k,l. (106)

Set k = 0 in eq.(106) we find that αi,0,l = αj,0,l. Set j = 0 in eq.(106) we find
that αi,0,k+l = α0,k,l.
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Now we define the module functor

F :Mq → RepZq,

F (iM) = i, F (i⊗ jM)
βi,j
// i⊗ F (jM) .

Consider the pentagon

F ((i⊗ j)⊗ kM)
αi,j,k

//

βi+j,k

��

F (i⊗ (j ⊗ kM))

βi,j+k

��

(i⊗ j)⊗ F (kM) i⊗ F (j ⊗ kM)

βj,k
uu

i⊗ (j ⊗ F (kM))

(107)

Thus we have
βi+j,k = αi,j,kβi,j+kβj,k. (108)

Set j = 0 in (108) we find that β0,k = α−1
i,0,k. Set i = 0 in (108) we find that

β0,j+k = α−1
0,j,k. Thus β0,k are uniquely determined by α, with no incompatibil-

ity.
Observe that (108) provides us a way to determine βi+j,k with βi,j+k, βj,k,

which is associative, like some kind of “addition”

βi+(j+k),l = αi,j+k,lβi,j+k+lβj+k,l = αi,j+k,lαj,k,lβi,j+k+lβj,k+lβk,l

= β(i+j)+k,l = αi+j,k,lβi+j,k+lβk,l = αi+j,k,lαi,j,k+lβi,j+k+lβj,k+lβk,l,
(109)

Therefore, we can choose nonzero numbers as β1,k, such that

β0,k = βn,k = α1,n−1,kα1,n−2,k · · ·α1,1,kβ1,kβ1,k+1 · · ·β1,k+n−1, (110)

i.e.,

(β1,0β1,1 · · ·β1,q−1)
n/q = (α1,n−1,0α1,n−2,0 · · ·α1,1,0α1,0,0)

−1, (111)

and other βi,k are determined recursively with (108). We can make a choice

βi,k = α1,i−1,kα1,i−2,k · · ·α1,1,kβ1,kβ1,k+1 · · ·β1,k+i−1. (112)

And it is easy to check that (108) is satisfied. Now we finished the definition of
the module functor F , and it is obviously an isomorphic functor. We conclude
that all indecomposable semisimple module categories over RepZn are RepZq

where q|n. When q is a common divisor of n,m, RepZq is obviously a RepZn-
RepZm-bimodule category.
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8.2 Module Functors from RepZq to RepZp

Let RepZq and RepZp be module categories over RepZn. We investigate mod-
ule functors between them in this subsection. First we figure out the object
maps. Consider

F : RepZq → RepZp

0 7→ M.

Because M = F (0) = F (q) ∼= q ⊗ F (0) = q ⊗M , in general, M has such form

M = i⊕ q + i⊕ 2q + i⊕ · · · ⊕ j ⊕ q + j ⊕ 2q + j ⊕ · · · , (113)

Let the greatest common divisor of q, p be (q, p) = r, we can reduce M to
[i⊗ (0⊕ r⊕ 2r⊕ · · · ⊕ p− r)]⊕ [j ⊗ (0⊕ r⊕ 2r⊕ · · · ⊕ p− r)]⊕ · · · . Therefore,
a simple module functor F from RepZq to RepZp has the object map as

F (0) = x⊗ (0⊕ r ⊕ 2r ⊕ · · · ⊕ p− r). (114)

Let p = rs, q = rt and the least common multiple of q, p be ⟨q, p⟩ = rst = qs.
Then we figure out the possibilities of

F (1⊗ i)
β1,i
// 1⊗ F (i) . (115)

Follow the discussion of last subsection we know it suffices to choose all β1,i to
determine all βi,j . β1,i has s components

β1,i = β1,i,0 idx+i+1⊕β1,i,1 idx+i+1+r ⊕ · · · ⊕ β1,i,s−1 idx+i+1+p−r . (116)

In total we have qs parameters to determine β. Meanwhile, if F, F ′ : RepZq →
RepZp have the same object map (114), a natural transformation ν : F → F ′

also has qs parameters

νi = νi,0 idx+i⊕νi,1 idx+i+r ⊕ · · · ⊕ νi,s−1 idx+i+p−r, (117)

and the diagram (89) is equivalent to the following diagram (take the first com-
ponent of F (0))

F (0) = F (qs) 1⊗ F (qs− 1) (qs− 1)⊗ F (1) qs⊗ F (0)

qs+ x
β1,q−1,s−t

//

ν0,0

��

1⊗ qs+ x− 1

νq−1,s−t

��

(qs− 1)⊗ x+ 1
β1,0,0

//

ν1,0

��

qs⊗ x

ν0,0

��

qs+ x
β′
1,q−1,s−t

// 1⊗ qs+ x− 1 (qs− 1)⊗ x+ 1
β′
1,0,0

// qs⊗ x

F ′(0) = F ′(qs) 1⊗ F ′(qs− 1) (qs− 1)⊗ F ′(1) qs⊗ F ′(0)

(118)
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where a part of the middle looks like

(q − 1)⊗ F (qs− q + 1) q ⊗ F (qs− q) (q + 1)⊗ F (qs− q − 1)

(q − 1)⊗ qs− q + 1 + x
β1,0,s−t

//

ν1,s−t

��

q ⊗ qs− q + x
β1,q−1,s−2t

//

ν0,s−t

��

(q + 1)⊗ qs− q − 1 + x

νq−1,s−2t

��

(q − 1)⊗ qs− q + 1 + x
β′
1,0,s−t

// q ⊗ qs− q + x
β′
1,q−1,s−2t

// (q + 1)⊗ qs− q − 1 + x

(q − 1)⊗ F ′(qs− q + 1) q ⊗ F ′(qs− q) (q + 1)⊗ F ′(qs− q − 1)

(119)
In general the second index of β and the first index of ν decrease by 1 each
block, and the last index of β, ν remain the same among q blocks and decrease
by t when entering the next q blocks. Thus we see the diagram (118) encode all
information of β, ν.

Now we can put β into canonical forms. First we can make all β1,i,j equal
to each other by choosing appropriate ν; second, when β1,i,j = β

F (1⊗ i)
β id
// 1⊗ F (i) . (120)

Thus 1 = β0,0 = βn,0 = β1,n−1β1,n−2 · · ·β1,0 = βn, i.e. β is n-th root of 1.
Third, from (118) we see that βqs = (β′)qs, i.e. two module functors F, F ′ are
isomorphic if β, β′ differ by qs-th root of 1, or ⟨q, p⟩-th root of 1. Therefore we
have canonical forms of all the simple objects in FunRepZn

(RepZq,RepZp)

Fxy : RepZq → RepZp,

Fxy(0) = x⊗ (0⊕ r ⊕ 2r ⊕ · · · ⊕ p− r), r = (q, p),

Fxy(1⊗ k)
exp

(
2πi

y

n

)
id
// 1⊗ Fxy(k) ,

Fxy
∼= Fx′y′ ⇐⇒

{
x = x′ mod p,

y = y′ mod
n

⟨q, p⟩
.

(121)

Let RepZq,RepZp be RepZn-RepZm-bimodule categories, i.e. ⟨q, p⟩|(n,m)
with all the bimodule structures trivial. Similar to the discussion above, the
object map for a bimodule functor F : RepZq → RepZp is as (114). Use the
same trick as in diagram (118), we can make

F (1⊗ i)
β id
// 1⊗ F (i) , (122)
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and due to diagram (96) we also require that

F (i⊗ 1)
γ id
// F (i)⊗ 1 , (123)

where β is an n-th root of 1, and γ is an m-th root of 1. Moreover, we can
use natural transformations to shift β, γ together by ⟨q, p⟩-th roots of 1, thus
sometimes it will be better to use the difference between β, γ to describe F
(half-braiding)

F (i)⊗ 1
γ−1β id

// 1⊗ F (i) (124)

We have canonical forms of the simple objects in FunRepZn|RepZm
(RepZq,RepZp):

Fxyz : RepZq → RepZp,

Fxyz(0) = x⊗ (0⊕ r ⊕ 2r ⊕ · · · ⊕ p− r), r = (q, p),

Fxyz(1⊗ k)
exp

(
2πi

y

n

)
id
// 1⊗ Fxyz(k) ,

Fxyz(k ⊗ 1)
exp

(
2πi

z

m

)
id
// Fxyz(k)⊗ 1 ,

Fxyz(k)⊗ 1

exp

(
2πi

ym− zn

nm

)
id

// 1⊗ Fxyz(k) ,

Fxyz
∼= Fx′y′z′ ⇐⇒


x = x′ mod p,

y = y′ mod
n

⟨q, p⟩
,

ym− zn = y′m− z′n mod nm.

(125)

The canonical forms of module functors satisfy

FxyzFx′y′z′ = F(x+x′)(y+y′)(z+z′). (126)

As a special case, n = m = q = p, we get the Drinfeld center of RepZn,
Z(RepZn) = FunRepZn|RepZn

(RepZn,RepZn), whose simple objects are

Fxy : RepZn → RepZn,

Fxy(0) = x, Fxy(k)⊗ 1
exp

(
2πi

y

n

)
id

// 1⊗ Fxy(k) ,

Fxy
∼= Fx′y′ ⇐⇒

{
x = x′ mod n,
y = y′ mod n.

(127)
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8.3 iVec as invertible RepZn-RepZn-bimodule

As we have discussed above, RepZ1 = Vec is a RepZn-RepZn-bimodule, which
is not invertible. However, there are nontrivial bimodule structures making the
category of vector spaces an invertible RepZn-RepZn-bimodule. We denote
this invertible bimodule by iVec. We will list the data of iVec below without
the proof why it is invertible, since we are not going to discuss tensor product
of bimodule categories in detail. RepZn itself is invertible as bimodule, and the
defects described by RepZn and iVec allow excitations tunneling freely.

iVec has only one simple object C, the nontrivial bimodule structure is

(1⊗ C)⊗ 1

exp

(
2πi

n

)
// 1⊗ (C⊗ 1) . (128)

We can write down FunRepZn|RepZn
(iVec, iVec):

Fyz : iVec→ iVec,

Fyz(C) = C,

Fyz(1⊗ C)
exp

(
2πi

y

n

)
id
// 1⊗ Fyz(C) ,

Fyz(C⊗ 1)
exp

(
2πi

z

n

)
id
// Fyz(C)⊗ 1 ,

Fyz
∼= Fy′z′ ⇐⇒

{
y = y′ mod n,
z = z′ mod n.

(129)

It is interesting to check the result of LiVec, RiVec. We see LiVec(Fxy) =
Fyx and RiVec(Fxy) = Fx,−y. Both LiVec and RiVec are equivalence functors.
Physically, a bulk excitation Fxy can tunnel through the defect iVec to the
other side, by the action of (RiVec)−1LiVec and become another type of bulk
excitation Fy,−x.

9 Unitary Braided Fusion Category

We have discussed unitary fusion category and module category in the previ-
ous sections, which can describe the wavefunctions of string-net model and its
gapped boundary. In this section we add the braiding structure and introduce
unitary braided fusion category (UBFC), which describes the (non-Abelian)
statistics of quasiparticle excitations or simply anyons.

Definition 9.1 (Unitary braided fusion category). A unitary fusion category is
called braided if there are natural isomorphisms: cA,B : A⊗B → B ⊗A, called
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braidings, satisfying c−1
A,B = c†A,B and the hexagon equations:

(B ⊗A)⊗ C
αB,A,C

// B ⊗ (A⊗ C)

idB ⊗cA,C

((

(A⊗B)⊗ C

cA,B⊗idC

66

αA,B,C

((

B ⊗ (C ⊗A)

A⊗ (B ⊗ C)
cA,B⊗C

// (B ⊗ C)⊗A

αB,C,A

66

(130)

(B ⊗A)⊗ C
αB,A,C

// B ⊗ (A⊗ C)
idB ⊗c−1

C,A

((

(A⊗B)⊗ C

c−1
B,A⊗idC

66

αA,B,C

((

B ⊗ (C ⊗A)

A⊗ (B ⊗ C)
c−1
B⊗C,A
// (B ⊗ C)⊗A

αB,C,A

66

(131)
We denote by C the same tensor category as C but with reversed braiding cA,B :=
c−1
B,A.

Exercise 9.1. Prove

c1,AλA = ρA, cA,1ρA = λA. (132)

Graphically, the braiding cA,B is drawn as

cA,B =
BA
, (133)

and its inverse as

c−1
A,B =

B A
, (134)

which satisfy

A B = AB . (135)

In terms of simple objects, the associativity isomorphism αi,j,k can be rep-
resented by the F -matrix. The braiding can be similarly represented by the
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R-matrix, which is also unitary:

ci,j

i j

?� a

k

_
=

?� a

k

_

ij

=
∑
b

Rij
k,ba

?� b

k

_

j i

, (136)

Rij
k,ba = (ci,j)k,ba = |pk,bji ci,j(p

k,a
ij )†|. (137)

As long as N ij
k , F ijk

l and Rij
k are known, any graphs can be calculated. One

important trick is that, since ci,j are natural isomorphisms, a string can slide
above or under any morphisms, in particular the vertices:

i j

k l

=

i j

k l

, (138)

i j

k l

=

i j

k l

. (139)

One can say that the data (N ij
k , F ijk

l , Rij
k ) represents a unitary braided fusion

category. The definitions above can be translated into algebraic equations of
(N ij

k , F ijk
l , Rij

k ). However, solving these equations can be quite tedious. On

the other hand, F ijk
l and Rij

k depend on the choice of basis for the vertices,
which makes it difficult to recognize equivalent solutions. Next we introduce
some basis independent quantities that characterize a unitary braided fusion
category.

Definition 9.2 (Topological spin, T matrix). The topological spin θi of a simple
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object i is given by

θi =
1

di
tr ci,i =

1

di
KK

i

. (140)

The corresponding T matrix is a diagonal matrix indexed by simple objects
whose diagonal elements are the topological spins:

Tij = θiδij . (141)

Exercise 9.2. Prove the followings properties of θi:

θi =
∑
j

dj
di

TrRii
j , (142)

EE

i

= θi
OO

i

, (143)

θiθi = 1, (144)

θa = θa∗ . (145)

Definition 9.3 (S matrix). S matrix, also indexed by simple objects, is given
by

Sij =
1

D
tr cj∗,ici,j∗ =

1

D
�� iOO jOO�� , (146)

where D = dim(C) =
√∑

i d
2
i is called the total (or global) quantum dimension.

The total quantum dimension is a measure of the size of fusion category.

Lemma 9.1 (EO [9]). By a fusion subcategory we mean a full subcategory
that is a fusion category itself. If B is a fusion subcategory of C (or there is a
fully faithful tensor embedding B ↪→ C) then dim(B) ≤ dim(C), and the equality
holds if and only if B ≃ C.
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Exercise 9.3. Prove the following properties of the S matrix:

Sij =
∑
k

dk
D

Tr(Rj∗i
k Rij∗

k ) =
∑
k

dk
D

θk
θiθj

N ij∗

k , (147)

Sij = Sji = Sij∗ , (148)

D

dx
SixSjx =

∑
k

N ij
k Skx. (149)

It is of particular interest whether the mutual statistics of two anyons is
trivial or not, namely

Definition 9.4. The objects X,Y in a UBFC C are said to centralize each other
(mutually trivial) if

cY,XcX,Y = idX⊗Y , (150)

where cX,Y : X ⊗ Y ∼= Y ⊗X is the braiding in C. Equivalently, i, j centralize
each other if Sij = didj/D. Given a fusion subcategory D ⊂ C, its centralizer
D′|C in C is the full subcategory of objects in C that centralize all the objects
in D. The centralizer is a fusion subcategory. In particular, C′|C is called the
Müger center of C.

In a 2+1D topological order (intrinsic without symmetry), we expect that
the type of quasiparticles can be measured by the braidings. This is captured
by the following notion.

Definition 9.5. A UBFC C is a unitary modular tensor category (UMTC) if
C′|C = Vec. Equivalently, its S matrix is invertible.

Remark 9. The T, S matrices of a UMTC form a projective representation of
SL(2,Z) (modular transformation),

S4 = I, (ST )3 = e2πi
c
8S2, (151)

where c is known as the chiral central charge,

e2πi
c
8 =

∑
i

d2i θi
D

. (152)

Definition 9.6. The Drinfeld center Z(A) of a tensor category A is a braided
tensor category with objects as pairs (X ∈ A, bX,−), where bX,− : X ⊗ − →
−⊗X are half-braidings that satisfy similar conditions as braidings. Morphisms
are those that commute with half-braidings. The tensor product is given by

(X, bX,−)⊗ (Y, bY,−) = (X ⊗ Y, (bX,− ⊗ idY )(idX ⊗bY,−)), (153)

where the associators have been omitted. The braiding is c(X,bX,−),(Y,bY,−) =
bX,Y .
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It is known that Z(A) is a UMTC if A is a unitary fusion category [16].
Physically, a string-net model constructed from a UFC A describes a topological
order whose quasiparticle excitations are Z(A).

Lemma 9.2 (DGNO [7]). Let D be a fusion subcategory of a UMTC C, then

(D′|C)
′|C = D, dim(D) dim(D′|C) = dim(C).

Definition 9.7. A UBFC E is a symmetric fusion category if E ′|E = E .

UMTC and symmetric fusion category correspond to two extreme cases, i.e.,
braiding is non-degenerate and maximally degenerate, respectively. Symmetric
fusion categories are closely related to bosonic and fermionic symmetry groups,
according to the following theorem

Theorem 9.3 (Deligne [5]). A symmetric fusion category is braided equivalent
to Rep(G, z), where G is a finite group, and z ∈ G is a central element such that
z2 = 1, and Rep(G, z) is the fusion category Rep(G) equipped with braiding cz:

czX,Y (x⊗C y) = (−1)mny ⊗C x, ∀x ∈ X, y ∈ Y, zx = (−1)mx, zy = (−1)ny.

When z = 1 it is Rep(G) with the usual braiding x ⊗C y → y ⊗C x. When
z ̸= 1 it is the fermion number parity. Fermions braid with each other with
an extra −1. We introduce sRep(Gf ) = Rep(G, z) for z ̸= 1 to emphasize its
fermionic nature.

Example 9.1. sRep(Zf
2 ) is the category of super Hilbert spaces, sHilb, that is,

Z2-graded Hilbert spaces with Z2-graded braiding. It corresponds to invertible
fermionic phases with no other symmetries.

In a physical system with no topological order but with global symmetry G,
its excitations carries representations of G. Due to Theorem 9.3 we can simply
use the symmetric fusion category E = Rep(G, z) instead of the symmetry
group G to refer to the symmetry. What if a 2+1D system has both symmetry
E and topological order? It is natural to expect that the excitations are still
described by a UBFC C. Clearly, excitations carrying symmetry representations
should still be there, namely, E should be a subcategory of C. If the type of
an excitation cannot be measured via braidings, it must be measurable by the
symmetry. These considerations lead to the following notions.

Definition 9.8. A pair (C, ι), a UBFC C with a fully faithful embedding ι : E ↪→
C′|C , is a UBFC over E . Moreover, C is said a non-degenerate UBFC over E , or
UMTC/E , if C′|C = E . Two UBFCs over E , (C1, ι1) and (C2, ι2) are equivalent if
there is a braided monoidal equivalence F : C1 → C2 such that Fι1 = ι2.

The excitations in a 2+1D topological order with symmetry E thus should
form a UMTC/E . We recover the usual definition of UMTC when E is trivial.
In this case the subscript is omitted.

However, it is possible the symmetry is somewhat “anomalous”. To avoid
this, we require that E can be measured if we use the braiding with some addi-
tional particles (physically they are “gauged symmetry defects”).
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Definition 9.9. Given a UMTC/E C, its (minimal) modular extension is a pair
(M, ιM), a UMTC M, together with a fully faithful embedding ιM : C ↪→
M, such that E ′|M = C. Two modular extensions (M1, ιM1

), (M2, ιM2
) are

equivalent if there is a braided monoidal equivalence F :M1 →M2 such that
FιM1

= ιM2
. We denote the set of equivalence classes of modular extensions of

C byMext(C).

Remark 10. Here the condition E ′|M = C is equivalent to C′|M = E , or
dim(M) = dim(C) dim(E). Physically this means that the extra excitations in
M but not in C all have non-trivial mutual statistics with at least one excitation
in E . In fact, letM be a UMTC that contains a symmetric fusion category E as a
full subcategory, and D = E ′|M. Then, E is a full subcategory of D (E centralizes
itself) and D′|M = (E ′|M)

′|M = E . We see that D′|D = D∩(D′|M) = D∩E = E .
This means that D = E ′|M is automatically a UMTC/E , andM is its modular
extension. This will be a useful way to construct UMTC/E ’s from UMTCs.

Remark 11. For a given UMTC/E C, it is possible that there is no minimal
modular extension of C. Such C has anomalous symmetry and can only be
realized on the surface of some 3+1D SPT phase. An example was constructed
by Drinfeld [6]. It is a UMTC/Rep(Z2×Z2) with rank 5 and D2 = 8. The same
example is also discussed in Ref. [2].

To conclude, E ↪→ C ↪→M where E ′|M = C andM is a UMTC, charaterize
a 2+1D topological phase with symmetry, or symmetry enriched topological
(SET) phase. This characterization becomes complete after we include a chiral
central charge c to address the invertible phases (i.e., those without topological
excitations). It is important to note that counting modular extensions of a fixed
C is different from counting topological phases.

Definition 9.10. Two topological phases with symmetry E , labeled by (E ι1−→
C1

ιM1−−−→M1, c1) and (E ι2−→ C2
ιM2−−−→M2, c2), are equivalent if c1 = c2 and there

are braided monoidal equivalences FC : C1 → C2, FM : M1 → M2 such that
FCι1 = ι2, ιM2

FC = FMιM1
.

Physically, when counting topological phases, we allow “relabelling” anyons
in C andM together in a compatible way. But we do not allow mixing “excita-
tions” (anyons in C) with “gauged symmetry defects” (anyons not in C). Also
we do not allow “relabelling” local excitations in E , as they are related to the
symmetry group which has absolute meaning. For example spin-flip Z2 can not
be considered as the same as layer-exchange Z2, nor can their representations
be relabelled. On the other hand, when counting modular extensions, we fix
all the excitations in C and only allow “relabelling” “gauged symmetry defects”
(anyons inM but not in C).

The embeddings ι, ιM are important data. However, in Section 11, the
embeddings are naturally defined, as we construct E , C as full subcategories of
M. So we may omit the embeddings to simplify notations whenever there is no
ambiguity.
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10 Algebra in tensor categories

The notion of algebra in a generic tensor category is a generalization of the
usual associative algebra, which is simply algebra in the tensor category of
vector spaces.

Definition 10.1 (Algebra). An algebra in a tensor category C is a pair (A,m),
an object A with a multiplication morphism m : A ⊗ A → A, such that the
multiplication is associative:

(A⊗A)⊗A
αA,A,A

//

m⊗idA

��

A⊗ (A⊗A)

idA ⊗m

��

A⊗A

m

%%

A⊗A

m
yy

A

(154)

or compactly, m(idA⊗m)αA,A,A = m(m⊗ idA). Graphically,

m

m

A

A

A

A

A
=

m

m

A

A

A

A

A
. (155)

The algebra is said unital if there is a unital morphism η : 1→ A such that

1⊗A

η⊗idA

��

λA

""

A⊗ 1

idA ⊗η

��

ρA

||

A⊗A
m
// A A⊗A

m
oo

(156)

or compactly, m(η ⊗ idA) = λA,m(idA⊗η) = ρA. Graphically,

m

η

A

A

A

= A =
m

η

A

A

A

. (157)

An algebra morphism between algebras (A,m), (A′,m′) is a morphism f :
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A→ A′ that commutes with the multiplications m,m′,

A⊗A
f⊗f
//

m

��

A′ ⊗A′

m′

��

A
f

// A′

(158)

or fm = m′(f ⊗ f).

Now assume that C is a unitary (braided) fusion category, there are more
properties of an algebra in C we will be interested in

Definition 10.2. A unital algebra (A,m, η) in a UFC C is said connected if
Hom(1, A) = C.

Definition 10.3. An algebra (A,m) in a UFC C is said isometric if mm† = idA.
Graphically,

m

m†

A

A

A A = A . (159)

Definition 10.4. An algebra (A,m) in a UBFC C is said commutative if

A⊗A
cA,A

//

m
""

A⊗A

m
||

A

(160)

namely mcA,A = m. Graphically,

m

A

AA

=
m

A

A A

. (161)

Definition 10.5 (Condensable algebra). An algebra in a unitary braided fusion
category is condensable if it is unital, connected, isometric and commutative.
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Remark 12. This is an important notion that is widely studied. In the subfac-
tor context it is called (irreducible local) Q-system [15]. In category literature
it is also known as connected étale algebra (connected commutative separable
algebra) [7, 4], or commutative special symmetric C∗-Frobenius algebra [16, 10].
The latter two are more general; they do not require the category to be unitary.
In the unitary case, they are equivalent notions [15]. We follow Ref. [13] to call
“condensable algebra” for its physical meaning and also simplicity.

The following theorem supports the equivalence of these notions:

Theorem 10.1. Let (A,m, η) be a unital isometric algebra in a unitary fusion
category, it satisfies the following Frobenius condition:

(idA⊗m)αA,A,A(m
† ⊗ idA) = m†m = (m⊗ idA)α

−1
A,A,A(idA⊗m

†). (162)

Proof. We prove the condition graphically, where the associator αA,A,A is im-
plicit. It suffices to check that

m†

m

A

A

A

A

A

=
m

m†

A

AA

AA

. (163)

Let f be their difference:

f

A A

A A

=

m†

m

A

A

A

A

A

−
m

m†

A

AA

AA

. (164)

By direct calculation (applying the associative and isometric properties),

f

f†

A A

A A

A A

=

m†

m

A

m†

m
A

A

A

A

A

AA

−
m

m†

A

AA

AA

, (165)
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and

f

m†

m

f†

A

A

A A

A

A

A

A

A

= 0. (166)

Then, by Corollary 6.6, we know that

f

m†

A A

A

A

A

A

= 0, (167)

which then implies

f

A A

A A

= f

m†

A A

A

A

η†

A

A

= 0. (168)

Corollary 10.2. A unital isometric algebra (A,m, η) is self dual, with bA =

m†η, eA = η†m = b†A, and thus dimA = |b†AbA| = |η†η|.

In a unitary fusion category, we can express the data of an algebra A in
terms of simple objects. First take a decomposition of A as in (29)

idA = A =
∑
i

NA
i∑

a=1

?�_
A

a

� _

i

a_

A

=
∑
i

NA
i∑

a=1

qAi,ap
i,a
A . (169)
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The multiplication morphism m is then

m = m
A

A

A

=
∑

ijk,abc

A

c

� _

k

c_

m
A

A

a

oO

i

a?
A

A

b

� o

j

b
�

A

?�_

/�? O/�

. (170)

The central part can be expressed in terms of basis vertices pk,uij

� _

k

c_

m
A

/�

i

a?

A

O/
j

b
�

A
=
∑
u

Mkc,u
ia,jb

� _

k

u_
i j

=
∑
u

Mkc,u
ia,jbp

k,u
ij . (171)

Thus

m = m
A

A

A

=
∑

ijk,abc,u

Mkc,u
ia,jb

A

c

� _

k

u_

?�_

oO

i

a?
A

� o

j

b
�

A

=
∑

ijk,abc,u

Mkc,u
ia,jbq

A
k,cp

k,u
ij

(
pi,aA ⊗ pj,bA

)
.

(172)

Mkc,u
ia,jb is the “structure coefficients” of the algebra. In the category of vector

spaces Vec, the object labels i, j, k and the vertex label u reduce to trivial, and
Mkc,u

ia,jb reduces to structure coefficients of usual associative algebra, with a, b, c
the labels of basis vectors.

Exercise 10.1. Show that the associative conditionm(idA⊗m)αA,A,A = m(m⊗
idA) is equivalent to∑

w

Mrw,u
ia,jbM

ld,v
rw,kc =

∑
sxyz

F ijk
l,sxy,ruvM

sz,x
jb,kcM

ld,y
ia,sz. (173)
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Exercise 10.2. The tensor unit 1 is simple in a unitary fusion category, thus the
unital morphism η : 1→ A can be expressed in terms of embeddings η = ηaq

A
1,a.

If we take λi and ρi as our basis vertices (p
i,1
1i = λi, p

i,1
i1 = ρi), show that unital

condition is equivalent∑
a

ηaM
kc,1
1a,jb =

∑
a

ηaM
kc,1
jb,1a = δjkδbc. (174)

And the connected condition means that the range of index a in the above
expressions is 1, thus

Mkc,1
11,jb = Mkc,1

jb,11 = η−1
1 δjkδbc. (175)

Exercise 10.3. Show that the isometric condition is equivalent to∑
iajbu

Mkc,u
ia,jbM

kc′,u
ia,jb = δcc′ . (176)

Exercise 10.4. Show that the commutative condition is equivalent to

Mkc,u
ia,jb =

∑
v

Rij
k,vuM

kc,v
jb,ia. (177)

Exercise 10.5. Show that in the category of vector spaces, the above conditions
reduce to the usual ones of structure coefficients for an algebra to be associative,
unital, commutative, etc.

Next we introduce some basic notions to understand the representation the-
ory of the algebras in a tensor category, which is directly related to the theory
of anyon condensation. However, discussing the representation theory in detail
is beyond our scope, and we will only quote some results from relevant works
which are used later.

Definition 10.6 (Module over an algebra). A (right) module over a unital al-
gebra (A,m, η) in C is a pair (X, ρ), and object X ∈ C, with an action morphism
ρ : X ⊗A→ X satisfying

ρ(ρ⊗ idA) = ρ(idM ⊗m), (178)

ρ(idM ⊗η) = idM . (179)

When (A,m, η) is a condensable algebra, we call a module (X, ρ) local if

ρcA,McM,A = ρ. (180)

A morphism between modules (X, ρ), (Y, τ) is a morphism f : X → Y that
commutes with the actions ρ, τ

fρ = τ(f ⊗ idA). (181)
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Remark 13. The module is like “half an algebra”. It is similar to express
the data of a module in terms of some “structure coefficients”, which is left for
interested readers.

We denote the category of right A-modules by CA. A right module (X, ρ) is
turned into a left module via the braiding, (X, ρc−1

X,A) or (X, ρcA,X), and thus a
A-A-bimodule. The relative tensor functor ⊗A of bimodules then turns CA into
a fusion category. In general there can be two monoidal structures on CA, since
there are two ways to turn a right module into a bimodule (usually we pick one
for definiteness when considering CA as a fusion category). The two monoidal
structures coincide for the fusion subcategory C0A of local A-modules. Moreover,
C0A inherited the braiding from C and is also a unitary braided fusion category.

Physically, C describes the excitations in the original bulk phase, C0A describes
the excitations in the topological phase after condensing A, and CA describes
the excitations on the corresponding domain wall between C and C0A. We have
explained a similar picture in Section 7, when the bulk can be defined by string-
net model of some UFC A, namely C ≃ Z(A). In this special case, one can find
an algebra A in C ≃ Z(A) such that there are correspondences between CA, C0A
and UFCs A,B, A-B-bimoduleM which describe the string-net wavefunctions:

Z(A)0A ≃ Z(B), Z(A)A ≃ FunA|B(M,M). (182)

The following lemma tells us the size of CA and C0A.

Lemma 10.3 (DMNO [4]). Let A be a condensable algebra in UBFC C,

dim(CA) =
dim(C)
dim(A)

. (183)

If C is a UMTC, then so is C0A, and

dim(C0A) =
dim(C)
dim(A)2

. (184)

11 Stacking of topological phases

We can stack two existing topological phases to obtain a third phase, which
is better visualized in (2+1)D by just constructing a two-layer system. The
stacking operation is the easiest way to construct new topological phases from
old ones.

The most simple case is when there is no symmetry, and we allow any local
interactions between layers. We denote such stacking operation by ⊠ (indeed
it is related to the Deligne tensor product and we do not need to distinguish
the notations). Obviously, it is commutative and associative, C ⊠ D = D ⊠
C, (C1 ⊠ C2)⊠ C3 = C1 ⊠ (C2 ⊠ C3). The trivial phase 1 (tensor product states) is
the identity, C ⊠ 1 = 1⊠ C. Therefore, topological phases form a commutative
monoid (a “semi-group” that requires the existence of identity but not inverse)
under stacking.
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When stacking two systems C,D with the symmetries G1, G2, there is a
choice for the new symmetry of the two-layer system, that puts restrictions on
what symmetric interactions between layers can be added. One natural choice
is G1 × G2, denoted by C ⊠ D, that is to preserve the symmetry of each layer
respectively.

When G1 = G2 = G, another natural choice for the new symmetry is G,
denoted by C ⊠E D (recall that E is the representation category of G) where
G is viewed as a subgroup of G × G via the embedding g 7→ (g, g). In other
words, for the stacking ⊠E we allow the inter-layer interactions that preserve
only the subgroup G. C, D and C⊠E D share the same symmetry G. Therefore,
topological phases with symmetry G again form a commutative monoid under
the stacking ⊠E which preserves the symmetry.

A topological phase C with symmetry E is called invertible if there exists
another phase D such that C ⊠E D = 1. In this case C and D are time-reversal
conjugates. All invertible topological phases with symmetry E form an Abelian
group InvE under stacking. The chiral central charges of the edge states add
up under stacking, so taking the central charge is a group homomorphism from
invertible phases InvE to Q. Its image is cmin

E Z, where cmin
E is the smallest

positive central charge. From this point of view, the non-chiral invertible phases
(the kernel of the above group homomorphism) are the symmetry protected
topological (SPT) phases:

0→ SPTE → InvE → cmin
E Z→ 0,

Since H2(Z,M) = 0 for any abelian group M , the above must be a trivial
extension, namely

Invertible topological phases with symmetry ∼= SPTE × cmin
E Z,

For boson systems, cmin
Rep(G) = 8 corresponds to the E8 state. For fermion systems

with symmetry Gf = Gb × Zf
2 , c

min
sRep(Gb×Zf

2 )
= 1/2 corresponds to the p + ip

superconducting state. For other fermionic symmetries it will be clear how to
determine cmin

E at the end of this section.
Invertible phases do not support any non-trivial quasiparticle statistics. For

the non-invertible topological phases, we have to seriously study their quasipar-
ticle excitations, characterized by E ↪→ C ↪→M.

Again, consider the stacking operation corresponding to the no-symmetry
case firstly. It is given by the Deligne tensor product⊠, which defines a monoidal
structure on the 2-category of unitary braided fusion categories (more generally,
of Abelian categories). For two UMTCs C,D, C ⊠D is still a UMTC. (By con-
struction, HomC⊠D(A ⊠ B,X ⊠ Y ) = HomC(A,X) ⊗C HomD(B, Y ). All the
structures follows component-wise.) There is a parallel story for UMTC/E , a
monoidal structure ⊠E such that the “stacking” of two UMTC/Es is still a
UMTC/E . We introduce this construction and generalize it to modular exten-
sions. Such stacking operation is for UMTC/E together with their modular
extensions, thus physically the stacking operations for topological phases with
symmetry E .
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The basic idea is to first construct C ⊠ D which has symmetry E ⊠ E , and
then break the symmetry down to E . To do this, we construct a canonical
condensable algebra LC in C ⊠ C for any UBFC C. In particular, LE is the
algebra that corresponds to the symmetry breaking E ⊠ E → E .

Let C be a braided fusion category and A a fusion category, a tensor functor
F : C → A is called a central functor if it factorizes through Z(A), i.e., there
exists a braided tensor functor F ′ : C → Z(A) such that F = forAF

′, where forA
is the forgetful tensor functor forA : Z(A)→ A, (X, bX,−) 7→ X that forgets the
half-braidings.

Lemma 11.1 (DMNO [4]). Let F : C → A be a central functor, and R : A → C
the right adjoint functor of F . Then the object A = R(1) ∈ C has a canonical
structure of condensable algebra. CA is monoidally equivalent to the image of
F , i.e. the smallest fusion subcategory of A containing F (C).

If C is a unitary braided fusion category, it is naturally embedded into Z(C),
by taking X 7→ (X, bX,− = cX,−). So is C. Therefore, we have a braided tensor
functor C ⊠ C → Z(C). Compose it with the forgetful functor forC : Z(C) → C
we get a central functor

⊗ : C ⊠ C → C
X ⊠ Y 7→ X ⊗ Y.

Let R be its right adjoint functor, we obtain a condensable algebra LC := R(1) ∼=
⊕i(i⊠ i∗) ∈ C ⊠ C and C = (C ⊠ C)LC , dim(LC) = dim(C). In particular, for a
symmetric category E , LE is a condensable algebra in E⊠E , and E = (E⊠E)LE =
(E ⊠ E)0LE

for E is symmetric, all LE -modules are local.

Exercise 11.1. The structure coefficients of LC is

Mk⊠k∗,u⊠v
i⊠i∗,j⊠j∗ = δuv

√
1

dim C
didj
dk

, (185)

provided that we choose the basis vertex pk,uij ⊗C pk
∗,v

i∗j∗ , where

pk
∗,v

i∗j∗ =

((
pk,vij

)†)∗

ci∗,j∗ =

(
ci,j

(
pk,vij

)†)∗

, (186)

or graphically

i∗ j∗

� _v

k∗

_ =

i∗

i

j∗

j

k∗

@ v

k

_
=

i

i∗

j

j∗

k∗

A! v

k

_

.

(187)
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Here pk,uij is orthonormal, pk,uij

(
pk,vij

)†
= δuv idk, and ci,j is the braiding in C,

ci,j = c−1
j,i = c†j,i. Try to verify the conditions (173)(176)(177) and convince

yourself that LC is indeed a condensable algebra.

Now, we are ready to define the stacking operation for UMTC/E ’s as well as
their modular extensions.

Definition 11.1. Let C,D be UMTC/E ’s, andMC ,MD their modular exten-
sions. The stacking is defined by:

C ⊠E D := (C ⊠D)0LE
, MC ⊠EMD := (MC ⊠MD)

0
LE

(188)

Theorem 11.2. C⊠E D is a UMTC/E , andMC ⊠EMD is a modular extension
of C ⊠E D.

Proof. The embeddings E = (E⊠E)0LE
↪→ (C⊠D)0LE

= C⊠ED ↪→ E ′|MC⊠EMD ↪→
(MC ⊠MD)

0
LE

=MC ⊠EMD are obvious. So C ⊠E D is a UBFC over E . Also

dim(C ⊠E D) =
dim(C ⊠D)
dim(LE)

=
dim(C) dim(D)

dim(E)
, (189)

andMC ⊠EMD is a UMTC,

dim(MC ⊠EMD) =
dim(MC ⊠MD)

dim(LE)2
= dim(C) dim(D). (190)

Therefore, C ⊠E D and E ′|MC⊠EMD have the same total quantum dimension,
thus by Lemma 9.1 we know that they are the same. By Remark 10, C ⊠E D is
a UMTC/E , andMC ⊠EMD is a modular extension of C ⊠E D.

Note that C ⊠E E = C. Therefore, for any modular extension ME of E ,
MC⊠EME is still a modular extension of C. Physically this means that stacking
with an invertible phase will not change the bulk excitations. In the following
we want to show the inverse, that one can extract the “difference”, a modular
extension of E , or an invertible phase, between two modular extensions of C.

Lemma 11.3. We have (C ⊠ C)0LC
= C′|C .

Proof. (C ⊠ C)LC is equivalent to C (as a fusion category). Moreover, for X ∈ C
the equivalence gives the free module (X⊠1)⊗LC ∼= (1⊠X)⊗LC . (X⊠1)⊗LC
is a local LC module if and only if X ⊠ 1 centralize LC . This is the same as
X ∈ C′|C . Therefore, we have (C ⊠ C)0LC

= C′|C .

Lemma 11.4 (FFRS [10]). For a non-commutative algebra A, we have the left
center Al of A, with algebra embedding el : Al → A, which is the maximal
subalgebra such that m(idA⊗el)cAl,A = m(el⊗ idA). Similarly the right center
Ar with er : Ar → A, is the maximal subalgebra such that m(er ⊗ idA)cA,Ar =
m(idA⊗er). Al and Ar are commutative subalgebras, thus condensable. There
is a canonical equivalence between the categories of local modules over the left
and right centers, C0Al

= C0Ar
.
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Theorem 11.5. letM andM′ be two modular extensions of the UMTC/E C.
There exists a unique K ∈ Mext(E) such that K ⊠EM =M′. Such K is given
by

K = (M′ ⊠M)0LC
. (191)

Proof. K is a modular extension of E . This follows Lemma 11.3, that E =
C′|C = (C ⊠ C)0LC

is a full subcategory of K. K is a UMTC by construction, and

dim(K) = dim(M) dim(M′)
dim(LC)2

= dim(E)2.
To show that K = (M′ ⊠M)LC satisfies M′ = K ⊠E M, note that M′ =

M′ ⊠Hilb =M′ ⊠ (M⊠M)0LM
. It suffices that

(M′ ⊠M⊠M)01⊠LM
= [(M′ ⊠M)0LC

⊠M]0LE

= (M′ ⊠M⊠M)0(LC⊠1)⊗(1⊠LE)
. (192)

While 1⊠LM and (LC ⊠ 1)⊗ (1⊠LE) turns out to be left and right centers of
the algebra (LC ⊠ 1)⊗ (1⊠ LM).

IfM′ = K ⊠EM = (K ⊠M)0LE
, then

K = (K ⊠M⊠M)01⊠LM
= (K ⊠M⊠M)0(LE⊠1)⊗(1⊠LC)

= [(K ⊠EM)⊠M]0LC
= (M′ ⊠M)0LC

. (193)

It is similar here that 1 ⊠ LM and (LE ⊠ 1) ⊗ (1 ⊠ LC) are the left and right
centers of the algebra (LE ⊠ 1)⊗ (1⊠ LM). This proves the uniqueness of K.

The above established the equivalences between UMTCs. To further show
that they are equivalences between modular extensions, one need to check the
embeddings of E , C. Here the only non-trivial braided tensor equivalences are
those between the categories of local modules over left and right centers. By the
detailed construction given in Ref. [10], one can check that they indeed preserve
the embeddings of E , C.

Let us list several consequences of Theorem 11.5.

Corollary 11.6. Mext(E) forms a finite Abelian group. The identity is Z(E)
and the inverse ofM isM.

Proof. It is easy to verify that the stacking ⊠E for modular extensions is as-
sociative and commutative. To show that they form a group we only need to
find out the identity and inverse. In this case K = (M′ ⊠M)0LE

=M′ ⊠E M,

Theorem 11.5 becomes M′ ⊠E M ⊠E M = M′, for any modular extensions
M,M′ of E . Thus, M′ ⊠E M′ = M′ ⊠E M′ ⊠E M ⊠E M = M ⊠E M, i.e.
ZE :=M⊠EM is the same category for any extensionM, which is exactly the
identity element. It is then obvious that the inverse ofM isM. The finiteness
follows from Ref. [1].

In fact, the identity ZE should be Z(E), the Drinfeld center of E . (This is
Theorem 11.8. The embedding E ↪→ Z(E) is given by the lift of the identity
functor on E , i.e., E ↪→ Z(E)→ E equals idE .)
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Example 11.1. Mext(sRep(Z
f
2 ))
∼= Z16, with central charge c = n/2 mod 8, n =

0, 1, 2, . . . , 15. This is the 16-fold way [11].

Example 11.2 (LKW [14]). Mext(Rep(G)) ∼= H3(G,U(1)), all with cen-
tral charge c = 0 mod 8. This agrees with the classification of bosonic SPT
phases [3].

Corollary 11.7. For a UMTC/E C,Mext(C), if exists, forms aMext(E)-torsor.
The action ofMext(E) onMext(C) is given by the stacking ⊠E .

Below is a standalone theorem that fixes the unit element in the Abelian
group of modular extensions.

Theorem 11.8. LetM be a modular extension of a UMTC/E C:

(M⊠M)0LC
= Z(E). (194)

In particular, this means that ZE = Z(E).

Proof. There is a Lagrangian algebra LM inM⊠M, such that the category of
LM-modules inM⊠M is (M⊠M)LM =M, via the functor (i⊠ 1)⊗LM 7→
i. LM is a condensable algebra over LC , and also a condensable algebra in
(M ⊠M)0LC

. We would like to show that [(M ⊠M)0LC
]LM = E . To see this,

note that E ↪→ (M⊠M)0LC
, the image of E identifies with the free LC-modules

(i⊠1)⊗LC , i ∈ E . Further check the free LM-modules in (M⊠M)0LC
generated

by these objects, and we find that [(i⊠ 1)⊗ LC ]⊗LC LM ∼= (i⊠ 1)⊗ LM 7→ i.
This means that E ⊂ [(M⊠M)0LC

]LM . Since they have the same total quantum

dimension, we must have [(M ⊠M)0LC
]LM = E . Since LM is Lagrangian in

(M⊠M)0LC
, (M⊠M)0LC

= Z([(M⊠M)0LC
]LM) = Z(E). Moreover, −⊗LCLM :

(M⊠M)0LC
→ [(M⊠M)0LC

]LM coincides with the forgetful functor Z(E)→ E .
Thus the embedding E ↪→ (M ⊠M)0LC

composed with the forgetful functor
Z(E)→ E gives the identity functor on E .

Note that in the proof we actually did not use the fact that E is a symmetric
category, indeed

Corollary 11.9. LetM a modular tensor category and C a fusion subcategory
ofM:

(M⊠M)0LC
= Z(C′|M). (195)

We conclude the main results. Topological phase with symmetry E are clas-
sified by the triple (C,M, c). We mathematically constructed the stacking op-
eration between them,

(C1,M1, c1)⊠E (C2,M2, c2) = (C1 ⊠E C2,M1 ⊠EM2, c1 + c2). (196)

In particular, the trivial phase with symmetry E is given by (E , Z(E), c = 0),
and invertible topological phases with symmetry E are described by (E ,M, c),
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where M is a modular extension of E , M ∈ Mext(E). They indeed form a
Abelian group under the stacking operation defined above. For boson systems,
E = Rep(G), Mext(Rep(G)) ∼= H3(G,U(1)), and they all have central charge
c = 0 mod 8. The group structure H3(G,U(1))× 8Z is recovered. For fermion
systems, we expect thatMext(sRep(G

f )) gives a full classification of invertible
phases. We can obtain both the fermionic SPT, namely the c = 0 part in
Mext(sRep(G

f )), and the smallest positive central charge cmin
sRep(Gf ) of the chiral

invertible phases. Thus, invertible topological phases with symmetry E are
classified by

SPTE × cmin
E Z, (SPTE × cmin

E Z)/8Z ∼=Mext(E). (197)

Also if we stack an invertible phase (E ,ME , c1) onto (C,M, c2), it only
changes the modular extension part,

(E ,ME , c1)⊠E (C,M, c2) = (C,ME ⊠EM, c1 + c2). (198)

By stacking all invertible phases (all modular extensions of E), all modular
extensions of C can be generated. Moreover, the “difference” between two mod-
ular extensions is a unique invertible phase (unique modular extension of E).
In short, the modular extensions of UMTC/E C form a torsor over the Abelian
groupMext(E).

Therefore, a UMTC/E C, if its modular extension exists, already fixed the
topological phase up to invertible ones. Appending the modular extension to the
label further fixes the invertible ones up to E8 states

1, and appending the central
charge c totally fixes the topological phase. On the other hand, if a UMTC/E
C has no modular extension, namely the symmetry can not be gauged, it is
anomalous and can only be realized on the boundary of (3+1)D SPT phases [2].
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