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Chapter 1

Fundamentals

1.1 What is quantum mechanics about, and not
about

Quantum mechanics is a quantitative description of the microscopic world. On
one hand, everything must finally relate to observables as outcomes of various
measurements; on the other hand, the quantitative requirement means math-
ematics must be involved. At the very basic level, quantum mechanics relates
objects in the real world to objects in the mathematical world, and has its own
names for these relations, i.e., the postulates:

� The states of a physical system form a Hilbert space.

� An observable corresponds to an Hermitian operator.

These two postulates contain more information than they seem to, because
Hilbert space and Hermitian operators are very compact mathematical terms
with a list of definitions and properties. We will expand on these details in the
next section. Besides, the first two postulates do not relate to measurements
directly; the third puts them on concrete ground:

� Measurements of an observable O on a state |ψ⟩ are controlled by the
spectrum, or eigensystem of O, in a probabilistic manner:

– The possible outcomes are the eigenvalues of O.

– If the outcome is λ, the state becomes a corresponding eigenstate
Pλ|ψ⟩, where Pλ is the orthogonal projection onto the eigensubspace
of λ.

– The (relative) probability for the outcome to be λ is ⟨ψ|Pλ|ψ⟩.

Again, we postpone the mathematical details to the following section.
Certainly we also need to postulate the dynamics, i.e., how the system

evolves with time. There are several equivalent formulations that we are go-
ing to discuss in detail in the next chapter.
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Note that these postulates say nothing about specific physical systems. To
apply them to a given system, we need to

� Identify the Hilbert space of quantum states;

� Identify of Hermitian operators of observables;

� Identify the dynamics.

Then the physical problem is translated into a mathematical problem. These
procedures need to be done in a case by case manner. However, some principles
may help. One is the quantization, that is, translating the pictures known in
classical physics into quantum pictures. One is symmetry, to which we will
devote a whole chapter.

The next thing is to solve the mathematical problems. Several solving meth-
ods will be introduced. But be warned that it is the spirits behind the method,
rather than the techniques, that really matter. It is more important to know
to which situations the methods apply, and why they do, so that when you
encounter new problems, you know what to do and where to find the technical
details. However, it is very likely that you will have to invent new methods for
new problems.

Beginners may get puzzled by the non-intuitive nature of quantum mechan-
ics. Indeed, the “clean postulates” directly connect observables which can be
measured in the real world to the quantities which can be computed in the
mathematical world; these “clean postulates” are all we really need, and all that
quantum mechanics is about. The extra things, such as intuitive pictures and
philosophical interpretations, may or may not help our understanding; unless
they can be put down to earth, relating to some measurements in experiments,
they make no real difference. It is your freedom to choose what picture or phi-
losophy you believe in; however, probably the most easy way is to “shut up and
calculate.”

1.2 Review: Linear algebra

A complex vector space is a set V whose elements called vectors, equipped
with two operations:

� Addition: for any two vectors α and β there is a third vector α+ β.

� Scalar multiplication: for complex number c and vector α, there is a vector
cα.

satisfying the following eight axioms

1. Associativity of addition: α+ (β + γ) = (α+ β) + γ.

2. Commutativity of addition: α+ β = β + α.
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3. Identity element of addition: There exists an element 0 ∈ V , called the
zero vector, such that α+ 0 = α for all α ∈ V .

4. Inverse elements of addition: For every α ∈ V , there exists a vector −α
such that α+ (−α) = 0.

5. Associativity of scalar multiplication: c1(c2α) = (c1c2)α.

6. Identity element of scalar multiplication: 1α = α.

7. Distributivity of scalar multiplication with respect to vector addition:
c(α+ β) = cα+ cβ.

8. Distributivity of scalar multiplication with respect to number addition:
(c1 + c2)α = c1α+ c2α.

Problem 1.2.1. Verify the properties

1. The zero vector is unique.

2. For any vector α, 0α = 0.

3. For any number c, c0 = 0.

4. The additive inverse −α of α is unique and −α = (−1)α.

A linear map, or operator, between two vector spaces V and W is a func-
tion f : V → W that preserves addition f(α + β) = f(α) + f(β) and scalar
multiplication f(cα) = cf(α), or equivalently, preserves linear combinations:
f(c1α + c2β) = c1f(α) + c2f(β). It is more common to denote operators by
capital letters A,B,O,U, . . . , and the image of vector α under operator A by
Aα. All the operators from V to W again form a vector space, with addition
(A+B)α = Aα+Bα and scalar multiplication (cA)α = c(Aα).

Problem 1.2.2. Verify that the eight axioms of vector space are satisfied by
the operators with the above addition and scalar multiplication.

A basis of vector space V is a subset of vectors {βi} ⊂ V such that any
vector γ ∈ V can be represented by a unique linear combination of βi,

γ = c1β1 + c2β2 + · · ·+ cnβn.

The number of vectors in the basis {βi} (or the cardinality if it is an infinite
set) is called the dimension of the vector space.

The complex numbers C can be viewed as a one-dimensional vector space. It
is easy to see that a vector α in V corresponds to an operator |α⟩ : C → V, c 7→
cα in a one-to-one manner. In other words, the vector space of operators from
C to V can be canonically identified with V . This is a good way to understand
the ket notation widely used in quantum mechanics. Immediately we have

|Aα⟩ = A|α⟩,
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where the right-hand side is interpreted as composition of operators.
An inner product on a vector space V assigns, to every pair of vectors

α, β, a complex number ⟨β|α⟩, satisfying

� Linearity: ⟨β|c1α1 + c2α2⟩ = c1⟨β|α1⟩+ c2⟨β|α2⟩.

� Conjugation symmetry: ⟨α|β⟩ = ⟨β|α⟩∗ where ∗ denotes the complex
conjugate. Note that this condition implies the antilinearity of the first
argument ⟨c1β1 + c2β2|α⟩ = c∗1⟨β1|α⟩+ c∗2⟨β2|α⟩, and that ⟨α|α⟩ is a real
number.

� Positive definiteness: ⟨α|α⟩ > 0 if α ̸= 0.

A vector space equipped with an inner product is called an inner product space.
Two vectors α, β are called orthogonal if ⟨β|α⟩ = 0; a basis {βi} is called
orthonormal if

⟨βi|βj⟩ = δij =

{
0, i ̸= j

1, i = j
.

The norm of a vector is defined by |α| =
√

⟨α|α⟩, and the distance between
two vectors is |α−β|. Then we can discuss Cauchy sequence and completeness.
A sequence of vectors α1, α2, α3, . . . is a Cauchy sequence if for any ϵ > 0,
there is an integer N such that for any n,m > N , |αn − αm| < ϵ. An inner
product space is called complete, or a Hilbert space, if every Cauchy sequence
converges to a vector within the space. In a Hilbert space we can safely do
calculus, taking limits, derivatives and integrals.

Similar to the ket, we may define a bra as an operator ⟨β| : V → C, using
the inner product

⟨β| : V → C,
α 7→ ⟨β|α⟩.

This way, the notation ⟨β|α⟩ may also be understood as the composition of
|α⟩ : C → V and ⟨β| : V → C, which is an operator C → C and just a complex
number. Such operator point of view unifies various bracket notations: for
example, |α⟩⟨β| is an operator V → C → V ; for A : V → W , ⟨β|A|α⟩ is a
number C → V → W → C, moreover, when α, β runs over a basis, ⟨β|A|α⟩ is
the matrix elements of operator A.

Given an operator A : V → W , its Hermitian conjugate is an operator
A† :W → V such that for any α ∈ V, β ∈W ,

⟨β|Aα⟩ = ⟨A†β|α⟩.

In other words, ⟨α|A†|β⟩ = ⟨β|A|α⟩∗, the matrix of A† is the complex conjugate
of the transpose of the matrix of A. We have the following properties

� Antilinearity: (cA)† = c∗A†, (A+B)† = A† +B†.

� (A†)† = A.
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� (AB)† = B†A†.

� (|α⟩)† = ⟨α|.

An operator A : V → V is called Hermitian if A† = A. An operator
U : V → W is called unitary if U†U = idV := 1 and UU† = idW where idV
and 1 denotes the identity operator: idV α = α = 1α. A unitary operator U
preserves inner product in the sense that ⟨Uβ|Uα⟩ = ⟨β|α⟩. In particular, if
{βi} is an orthonormal basis, so is {Uβi}.

Fix an orthonormal basis {βi} from now on. Any vector α can be uniquely
represented in this basis:

|α⟩ =
∑
i

ci|βi⟩.

Then, by the orthonormal condition, ⟨βj |α⟩ = cj ,

|α⟩ =
∑
i

|βi⟩⟨βi|α⟩,

thus, ∑
i

|βi⟩⟨βi| = 1,

which is sometimes referred to as a resolution of the identity. We can then
deduce that for any two orthonormal bases {αi} and {βi},

∑
i |αi⟩⟨βi| is a

unitary operator. Thus a change of (orthonormal) basis is nothing but a unitary
operator.

The trace of operator A : V → V is the sum of diagonal matrix elements,
TrA =

∑
i⟨βi|A|βi⟩. It has the property that TrAB = TrBA, which can be

proved by simply inserting the resolution of the identity:

TrAB =
∑
i

⟨βi|AB|βi⟩ =
∑
ij

⟨βi|A|βj⟩⟨βj |B|βi⟩

=
∑
ij

⟨βj |B|βi⟩⟨βi|A|βj⟩ =
∑
j

⟨βj |BA|βj⟩ = TrBA.

In particular, this property means that the notion of trace is independent of basis
choice: for any unitary U ,

∑
i⟨Uβi|A|Uβi⟩ =

∑
i⟨βi|U†AU |βi⟩ = TrU†AU =

TrAUU† = TrA.

Problem 1.2.3. Prove that TrA†B defines an inner product on the vector
space of operators.

If a nonzero vector α satisfies Aα = λα, λ ∈ C, α is called an eigenvector
of A, and λ the corresponding eigenvalue. If A satisfies AA† = A†A (called
normal, for example when A is Hermitian or unitary), it is possible to choose an
orthonormal basis {αi} from the eigenvectors of A, and in such basis, the matrix
of A is diagonal: ⟨αi|A|αj⟩ = λiδij ; equivalently, there exists a unitary operator
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U such that U†AU is diagonal. It is possible that several different basis eigen-
vectors correspond to the same eigenvalue; such eigenvalue is called degenerate.
To deal with degenerate and non-degenerate eigenvalues on equal footing, the
notion of eigensubspace Vλ, namely the subspace formed by all eigenvectors
of eigenvalue λ, is convenient. There is a unique orthogonal projection oper-
ator Pλ : V → V onto the subspace Vλ, satisfying P

2
λ = Pλ, P

†
λ = Pλ. In terms

of the orthonormal basis {αi} with Aαi = λiαi,

Pλ =
∑
λi=λ

|αi⟩⟨αi|.

We see
1 =

∑
λ

Pλ.

The eigenvectors and eigenvalues may be together called the eigensystem,
or the spectrum of operator A, and the above decomposition is called the
spectrum decomposition of A.

Problem 1.2.4. Practice your linear algebra skills in the smallest nontrivial
Hilbert space V , i.e., dimV = 2:

1. Let Z be an operator V → V , with the properties

� Hermitian Z† = Z;

� Zero trace TrZ = 0;

� Unitary ZZ† = 1.

Write down the matrix of Z in its eigen basis.

2. Let X be another Hermitian unitary operator with zero trace, whose ma-
trix elements in the eigen basis of Z are all real and XZ = −ZX. Deter-
mine X.

3. Let Y = iXZ. Show that Y is again Hermitian unitary with zero trace.

4. Show that Z,X, Y together with the identity operator 1 form an orthog-
onal basis of the vector space of operators V → V , with respect to the
operator inner product Tr(A†B).

5. You have rediscovered the Pauli operators via their nice mathematical
properties. Another usual notation of Pauli operators is σi, i = x, y, z.
Verify their commutation relations

[σi, σj ] := σiσj − σjσi =
∑
k

2iϵijkσk,

where ϵxyz = ϵyzx = ϵzxy = −ϵyxz = −ϵxzy = −ϵzyx = 1 and all other
ϵijk = 0.
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6. Let H : V → V be a general Hermitian operator. H can be expressed in
terms of the basis 1, Z,X, Y , H = a + zZ + xX + yY with real numbers
a, z, x, y. Find the eigensystem of H and explain how the parameters a
and r = (x, y, z) are related to the eigen values and eigen vectors. (Hint:
use polar coordinates.)

1.3 Postulates of quantum mechanics

We now revisit the postulates while explaining more details.

� The states of a physical system form a Hilbert space.

In particular, it means that linear combinations of states is again a state,

|ψ⟩ = a|α⟩+ b|β⟩.

This is the superposition. Multiplying a state |ψ⟩ by a nonzero number
c gives the same physical state c|ψ⟩, as an overall factor does not affect
the outcomes of measurements. In practice, when ⟨ψ|ψ⟩ is finite, we may

normalize the state by taking |ψ⟩√
⟨ψ|ψ⟩

. However, for normalized states

there is still a freedom of phase factors eiθ|ψ⟩. Nonetheless, sometimes it
is convenient to use non-normalized states.

� An observable correspond to an Hermitian operator.

A state with definite value of the observable, is an eigenstate of the Her-
mitian operator with the definite value being the corresponding eigen-
value. The properties of a Hermitian operator guarantee that the state-
ment makes sense:

– The eigenvalues of an Hermitian operator are real.

– The Hilbert space can be decomposed in terms of the spectrum of
a Hermitian operator, according to which we physically identify the
Hilbert space and the operator:

1. Choose any observable;

2. Collect all states |αi⟩ with all possible definite values λi of the
observable;

3. The Hilbert space is then spanned by {|αi⟩}; it must contain all
states that can be measured, and only those states that can be
measured;

4. The corresponding Hermitian operator is
∑
i λi|αi⟩⟨αi|.

� Measurements of an observable O on a state |ψ⟩ are controlled by the
spectrum, or eigensystem of O, in a probabilistic manner:

– The possible outcomes are the eigenvalues of O.
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– If the outcome is λ, the state becomes a corresponding eigenstate
Pλ|ψ⟩ (non-normalized), where Pλ is the orthogonal projection onto
the eigensubspace of λ.

– The (relative) probability for the outcome to be λ is ⟨ψ|Pλ|ψ⟩.

Easy to see ∑
λ

⟨ψ|Pλ|ψ⟩ = ⟨ψ|
∑
λ

Pλ|ψ⟩ = ⟨ψ|ψ⟩.

So the normalized probability is

⟨ψ|Pλ|ψ⟩
⟨ψ|ψ⟩

,

which reduces back to ⟨ψ|Pλ|ψ⟩ for normalized |ψ⟩. The above formula is more
general: it applies to non-normalized states; when both ⟨ψ|Pλ|ψ⟩ and ⟨ψ|ψ⟩ are
infinite, their ratio could still be finite.

In the case that the eigenvalue λ is non-degenerate, we can simply label the
unique normalized eigenstate by the eigenvalue, i.e. O|λ⟩ = λ|λ⟩ and Pλ =
|λ⟩⟨λ|. Assume that |ψ⟩ is also normalized, we got the not so general but more
commonly used formula: the probability for obtaining λ in a measurement is
|⟨λ|ψ⟩|2 and the state just becomes |λ⟩ after the measurement.

The expectation value of the observable is

⟨O⟩ =
∑
λ

λ
⟨ψ|Pλ|ψ⟩
⟨ψ|ψ⟩

=
1

⟨ψ|ψ⟩
⟨ψ|
∑
λ

λPλ|ψ⟩

=
1

⟨ψ|ψ⟩
⟨ψ|
∑
λ

OPλ|ψ⟩ =
⟨ψ|O|ψ⟩
⟨ψ|ψ⟩

.

Problem 1.3.1. Consider a two-level system and the observable concerned
are the Pauli operators Z,X, Y . Choose the orthonormal eigen basis of Z,
Z|0⟩ = |0⟩, Z|1⟩ = −|1⟩.

1. If we measure Z,X, Y on the state |ψ⟩ = a|0⟩+ b|1⟩, what are the possible
outcomes and the corresponding probabilities?

2. What are the expectation ⟨Z⟩, ⟨X⟩, ⟨Y ⟩ of the state |ψ⟩ = a|0⟩+b|1⟩? Use
polar coordinates

⟨Z⟩ = r cos θ, ⟨X⟩ = r sin θ cosϕ, ⟨Y ⟩ = r sin θ sinϕ.

Calculate r and express the state |ψ⟩ (up to a total factor) in terms of θ
and ϕ.

3. If we measured Z and got +1, then measure Z again, what are the possible
outcomes and corresponding probabilities of the second measurement?

4. If we measured Y and got −1, then measure X, what are the possible
outcomes and corresponding probabilities of the second measurement?
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1.4 Density operator

It becomes clear that a one-dimensional subspace, instead of a vector, really
corresponds to a physical state. Note that the quantities arising in the mea-
surements have the form

⟨ψ|A|ψ⟩ =
∑
i

⟨ψ|A|αi⟩⟨αi|ψ⟩ =
∑
i

⟨αi|ψ⟩⟨ψ|A|αi⟩ = Tr(|ψ⟩⟨ψ|A).

The projection operator |ψ⟩⟨ψ| on to the subspace is a cleaner description of a
state.

More generally, we may consider a mixed state

ρ =
∑
i

pi|ψi⟩⟨ψi|,

where 0 ≤ pi ≤ 1 is the probability for the system to be in state |ψi⟩⟨ψi|, with∑
i pi = 1. In the basis independent form: A density operator ρ has the

following defining properties

� Hermitian: ρ† = ρ;

� Normalized: Tr ρ = 1;

� Positive semi-definite: ∀α, ⟨α|ρ|α⟩ ≥ 0.

Measuring O on ρ produces outcome λ and resulting state PλρPλ

Tr(ρPλ)
, with proba-

bility Tr(ρPλ), and the expectation is ⟨O⟩ = Tr(ρO).

Problem 1.4.1. Show that the above formulas agree with those in the last
section for a pure state ρ = |ψ⟩⟨ψ|.

1.5 Commutator and uncertainty relation

An important feature that distinguishes quantum mechanics from classical me-
chanics is the fact that two observables can be incompatible: they can not have
definite values simultaneously. Given two observables A,B and a state |ψ⟩, |ψ⟩
having definite values of A and B simultaneously means |ψ⟩ is a simultaneous
eigenstate of A and B. A and B are said compatible if their common eigen-
state can form a complete orthonormal basis, i.e., there exists a basis {|αi⟩}
such that A =

∑
i ai|αi⟩⟨αi|, B =

∑
i bi|αi⟩⟨αi|. It follows that AB = BA.

Conversely, if AB = BA, consider an eigensubspace Vλ of A. ∀|α⟩ ∈ Vλ,
AB|α⟩ = BA|α⟩ = λB|α⟩, which means that B|α⟩ ∈ Vλ, the action of B
restricts in the eigensubspaces of A. Further doing spectrum decomposition
of these restrictions leads to a basis that is simultaneous eigenstates of A and
B. Thus equivalently, two observables A,B are compatible if they commute
AB = BA.
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It is natural to expect that the commutator

[A,B] := AB −BA,

measures the incompatibility of A and B. Given any state |ψ⟩, let ∆A =
A − ⟨ψ|A|ψ⟩, ∆B = B − ⟨ψ|B|ψ⟩. Applying the Cauchy–Schwarz inequality
leads to

⟨∆Aψ|∆Aψ⟩⟨∆Bψ|∆Bψ⟩ ≥
∣∣⟨∆Aψ|∆Bψ⟩∣∣2.

We may also prove the inequality in a more fundamental way, by expanding the
left-hand side of the following inequality (ψ omitted)

((|∆A⟩⟨∆B|∆B⟩ − |∆B⟩⟨∆B|∆A⟩)† (|∆A⟩⟨∆B|∆B⟩ − |∆B⟩⟨∆B|∆A⟩) ≥ 0.

Thus the variances ⟨(∆A)2⟩, ⟨(∆B)2⟩ satisfy

⟨(∆A)2⟩⟨(∆B)2⟩ ≥
∣∣⟨∆A∆B⟩

∣∣2.
Now examine the imaginary part of ⟨∆A∆B⟩ in the right-hand side

Im⟨∆A∆B⟩ = 1

2i
(⟨∆A∆B⟩ − ⟨∆A∆B⟩∗)

=
1

2i
(⟨∆A∆B⟩ − ⟨∆B∆A⟩)

=
1

2i
⟨[∆A,∆B]⟩ = 1

2i
⟨[A,B]⟩.

It follows that

⟨(∆A)2⟩⟨(∆B)2⟩ ≥ 1

4

∣∣⟨[A,B]⟩
∣∣2,

the famous uncertainty relation.

Problem 1.5.1. Determine the condition for minimal uncertainty (when the
equality holds).

Problem 1.5.2. Verify the properties of the commutator

[A,B] = −[B,A],

[A,B + C] = [A,B] + [A,C],

[A,BC] = [A,B]C +B[A,C],

[A, [B,C]] + [B, [C,A]] + [C, [A,B]] = 0.

The last one is known as the Jacobi identity.

1.6 Position and momentum

Now consider a quantum particle moving in 1-dimensional space, with no other
internal degrees of freedom. An observable of the particle is its position, cor-
responding to an operator x̂, by which we can also identify the Hilbert space,
spanned by |x⟩, the eigenstates of x̂, x̂|x⟩ = x|x⟩.
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In principle the total Hilbert space only decomposes to the eigensubspaces
Vx. Here we assume no observables to distinguish states inside Vx. By the prin-
ciple that the Hilbert space should not contain things that can not be measured,
we have to say that Vx is one-dimensional.

A small difference from what we have learned is that the eigenvalues of x̂
form a continuous spectrum. To deal with the continuous case rigorously, we
need the mathematics of functional analysis. However, that is essentially still
linear algebra; we will be good with most technical manipulations as long as we
obey several simple rules for the analogy between discrete and continuous cases.

The first rule is to replace discrete summation by integral. Thus the spec-
trum decomposition of x̂ writes

1 =

∫ +∞

−∞
dx |x⟩⟨x|.

Given a state

|ψ⟩ =
∫

dx |x⟩⟨x|ψ⟩,

the coefficient ⟨x|ψ⟩ is called the wavefunction, and often written as ψ(x); it
contains all the information of the state |ψ⟩. The inner product in terms of
wavefunctions is

⟨ϕ|ψ⟩ =
∫

dx ϕ(x)∗ψ(x).

An operator A maps the function ⟨x|ψ⟩ to a new one ⟨x|A|ψ⟩. Inserting the
resolution of identity

Aψ(x) =

∫
dy ⟨x|A|y⟩ψ(y),

which has the form of integral transform with ⟨x|A|y⟩ being the kernel function.
These are in analogy with matrix multiplication and matrix elements in the
discrete case. Interestingly, even if the linear map ψ(x) 7→ Aψ(x) is well defined,
the kernel function ⟨x|A|y⟩ may not be a usual function. To name an important
example, take A to be the identity operator 1, we have∫

dy ⟨x|y⟩f(y) = f(x), ∀f.

Make a change of variables y = x+ u, F (u) = f(x+ u).∫
du ⟨x|x+ u⟩F (u) = F (0),

which holds for any x and F . We conclude that ⟨x|y⟩ depends on only the
difference y − x; it worths a name

⟨x|y⟩ = δ(x− y),

the Dirac delta function δ(x) with defining property∫
dx δ(x)f(x) = f(0), ∀f.

13



If you examine the value of δ(x) per point, you find

δ(0) = +∞, δ(x) = 0, ∀x ̸= 0.

So it is not a function in the usual sense; it is a distribution or generalized
function. Strictly speaking, at this stage we are already beyond the usual
notion of Hilbert space, because the inner product ⟨x|y⟩ is no longer a usual
number. One way to put the above onto concrete ground is to note that there
exists a sequence of functions {δϵ(x)} to approximate δ(x), in the sense that

lim
ϵ→0+

∫
dx δϵ(x)f(x) = f(0), ∀f.

This justifies the formal integral notation of the “limiting function” δ(x). For
example

δϵ(x) =
e−x

2/ϵ

√
ϵπ

.

Of course such sequence is not unique; any sequence with the properties{∫ b
a
dx δϵ(x) → 0, (0 /∈ (a, b))∫ b

a
dx δϵ(x) → 1, (0 ∈ (a, b)),

as ϵ→ 0+ could do the job. We can manipulate (for example, take derivatives,
change variables, . . . ) the Dirac delta function as if it is a usual function, by
manipulating an approximating sequence of functions and then taking the limit.
We will also deal with other generalized functions in such manner in the future.

Problem 1.6.1. To understand why the properties{∫ b
a
dx δϵ(x) → 0, (0 /∈ (a, b))∫ +∞

−∞ dx δϵ(x) → 1,

as ϵ→ 0+ are enough for the delta function, check the step function θ(x) defined
by

θ(x) =

{
1, x > 0

0, x < 0.

Show that

θ(x) =

∫ x

−∞
δ(y)dy .

In other words we may formally view the delta function as the derivative of the
step function. Use integration by part to compute∫ b

a

f(x)δ(x)dx =

∫ b

a

f(x)dθ(x) .

Discuss the three cases a < b < 0, a < 0 < b, and 0 < a < b.

14



Recall the Fourier transform

F (ξ) =

∫
dx f(x)e−2πiξx,

whose inverse is

f(x) =

∫
dξ F (ξ)e2πiξx.

Putting them together

f(x) =

∫
dξ

(∫
dy f(y)e−2πiξy

)
e2πiξx =

∫
dy

(∫
dξ e2πiξ(x−y)

)
f(y).

We conclude that

δ(x) =

∫
dξ e2πiξx =

1

2π

∫
dk eikx,

which is a very useful representation of the delta function.
Next we want to identify the momentum operator p̂. In terms of its own

eigenstates, we should have, similar to position case, that the Hilbert space is
spanned by |p⟩ and 1 =

∫
dp |p⟩⟨p|, ⟨p1|p2⟩ = δ(p1−p2). So the question becomes

to identify ⟨x|p⟩, or equivalently, to express p̂ in terms of the position basis |x⟩.
In this section we solve the question by assuming the canonical commutation
relation. We will revisit this problem using the symmetry point of view in the
future.

Writing down the canonical commutation relation is a key step in the canon-
ical quantization which is a procedure to find the quantum analog of a classical
system, suggested by Paul Dirac in 1925. The basic idea is to replace classi-
cal variables by quantum operators, while replacing the Poisson brackets by
commutators

{x, p}Poisson 7→ 1

iℏ
[x̂, p̂].

As of the dynamics, the quantization procedure will be discussed later.
Now we start with the commutator

[x̂, p̂] = iℏ,

and derive the representation of p̂ in the position basis. We will use a small
additional assumption that if the wavefunction ⟨x|ψ⟩ is a constant, |ψ⟩ is an
eigenstate of p̂ with eigenvalue 0. Physically it means that if |ψ⟩ is distributed
equally all over the space, then |ψ⟩ is static, not moving at all and has zero
momentum. Denote by |φ0⟩ =

∫
dx |x⟩ one of such states. Given a function of

x, f(x), we define the operator f(x̂) by the formal Taylor expansion

f(x̂) =
∑
n

f (n)(0)

n!
x̂n.
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Problem 1.6.2. When the function is not good enough (can not be expanded
as a power series), but the operator A can be diagonalized, A =

∑
i |αi⟩λi⟨αi|,

we can still define the operator function

f(A) =
∑
i

f(λi)|αi⟩⟨αi|.

Prove that the two definitions are equivalent when they both apply.

Then we can verify that

⟨x|ψ(x̂)|φ0⟩ =
∫

dy ψ(y)⟨x|y⟩ = ψ(x).

Thus, we may express any state |ψ⟩ by

|ψ⟩ = ψ(x̂)|φ0⟩.

The commutator has the following property

[A,BC] = [A,B]C +B[A,C].

In other words, [A,−] satisfies a similar algebraic relation as a differential op-
erator when applying to a product, except that one needs to be careful on the
order of operators. We immediately have

[A,Bn] =

n−1∑
i=0

Bi[A,B]Bn−1−i.

Further if [B, [A,B]] = 0,

[A,Bn] = nBn−1[A,B] = [A,B]
∂Bn

∂B
, [A, f(B)] = [A,B]

∂f(B)

∂B
.

We call it the differential property of the commutator, which will be used quite
often again in this course, so take a note of it. Thus it is also true that

[f(x̂), p̂] = iℏ
∂f(x̂)

∂x̂
.

Therefore,

⟨x|p̂|ψ⟩ = ⟨x|p̂ψ(x̂)|φ0⟩

= ⟨x|ψ(x̂)p̂− iℏ
∂ψ(x̂)

∂x̂
|φ0⟩

= −iℏ⟨x|∂ψ(x̂)
∂x̂

|φ0⟩

= −iℏ
∂ψ(x)

∂x
= −iℏ

∂

∂x
⟨x|ψ⟩,
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which is the representation of p̂ in the position basis. Then we can solve for the
momentum eigenstates

p⟨x|p⟩ = ⟨x|p̂|p⟩ = −iℏ
∂

∂x
⟨x|p⟩.

The solution is
⟨x|p⟩ = Ceipx/ℏ.

To obtain the constant C, consider the normalization condition

δ(x− y) = ⟨x|y⟩ =
∫

dp ⟨x|p⟩⟨p|y⟩ =
∫

dp |C|2eip(x−y)/ℏ = 2πℏ|C|2δ(x− y).

Thus we take C = 1/
√
2πℏ, and

⟨x|p⟩ = 1√
2πℏ

eipx/ℏ.

It is the basis function of Fourier transform. We learned the key message that
in quantum mechanics position and momentum are Fourier transforms of each
other.

Problem 1.6.3. Derive the commutation relation

[x̂, p̂] = iℏ,

and
∫
dx p̂|x⟩ = 0 from the Fourier transform relation

⟨x|p⟩ = 1√
2πℏ

eipx/ℏ.

It follows that the following three definitions of p̂ operator are equivalent

�

{
[x̂, p̂] = iℏ,∫
dx p̂|x⟩ = 0,

� ⟨x|p̂|ψ⟩ = −iℏ ∂
∂x ⟨x|ψ⟩,

� ⟨x|p⟩ = 1√
2πℏe

ipx/ℏ.
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Chapter 2

Quantum Dynamics

2.1 Evolution operator

Under the assumption that the Hilbert space included all the relevant physical
entities, processes and observables, any quantum time evolution is essentially
a rotation in the Hilbert space. Both the states and the observable operators
could evolve with time. Pick a zero point of time, when the state is |ψ⟩ and
observable is O. For the state |ψ(t)⟩ at time t, we take the convention

|ψ(t)⟩ = Uψ(t)|ψ⟩.

For the observable O(t) at time t, we take the convention that its eigenstate |α⟩
evolves as

|α, t⟩ = U†
O(t)|α⟩,

and the operator evolves as

O(t) = U†
O(t)OUO(t).

Uψ(t), UO(t) are unitary operators with Uψ(0) = UO(0) = 1. The reason to
reverse the convention is that when measurements of O is concerned, we need
to consider ⟨α, t|ψ(t)⟩, or ⟨ψ(t)|O(t)|ψ(t)⟩, whose evolution is governed by the
total “relative” evolution U(t) = UO(t)Uψ(t). It is convenient to introduce
notations for the evolution from time t to time s

Uψ(s, t) = Uψ(s)U
†
ψ(t), UO(s, t) = U†

O(t)UO(s).

However, since operators are generally non-commutative,

U(s) = UO(s)Uψ(s) = UO(t)UO(s, t)Uψ(s, t)Uψ(t),

where the evolution occurs neither to the left nor to the right, but inside. We
have to make a choice in order to define U(s, t). If we want U(t) to follow the
same convention as Uψ(t),

U(s, t) = U(s)U†(t) = UO(t)
(
UO(s, t)Uψ(s, t)

)
U†
O(t), (2.1)
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where the conjugation by UO(t) is the price we have to pay when moving the
origin of time to t. Then we have the composition relation

U(t, u)U(u, s) = U(t, s),

and similar for Uψ(t, s), UO(t, s).
We are most interested in the total relative evolution U(t) (similar discussion

applies to Uψ(t) and UO(t)). If we know every infinitesimal evolution U(t+δt, t)
we can multiply them together to get the total evolution.

U(t+ δt, t) = 1 +
∂U(s, t)

∂s

∣∣∣∣
s=t

δt+ o(δt).

By the unitarity of U(s, t), it is easy to show

0 =
∂

∂s

(
U(s, t)U†(s, t)

) ∣∣∣∣
s=t

=
∂U(s, t)

∂s

∣∣∣∣
s=t

+
∂U†(s, t)

∂s

∣∣∣∣
s=t

.

Thus ∂U(s,t)
∂s

∣∣
s=t

is skew-Hermitian, whose eigenvalues are purely imaginary. We
define the Hamiltonian operator

H(t) := iℏ
∂U(s, t)

∂s

∣∣∣∣
s=t

,

which is Hermitian and has the dimension of energy. The Hamiltonian is the
generator of the evolution operator, in other words, generator of the time
translation. Note that H(t) is not the Hamiltonian operator evolved to time
t. It is logically misleading to speak of the time evolution of time evolution
operator; for the same reason we also avoid speaking of the time evolution
of Hamiltonian operator, though many textbooks discussed this and obtained
seemingly consistent result.

We obtain the partial differential equation

∂U(s)

∂s

∣∣∣∣
s=t

=
∂U(s, t)U(t)

∂s

∣∣∣∣
s=t

=
∂U(s, t)

∂s

∣∣∣∣
s=t

U(t),

namely

iℏ
∂U(t)

∂t
= H(t)U(t).

To see that the Hamiltonian indeed physically represents the energy operator,
recall that if a system is time-translation invariant, then its energy is conserved.
Now assume the evolution operator is time-translation invariant, U(s, t) = U(s−
t, 0) = U(s− t), we conclude

H = iℏ
∂U(t)

∂t

∣∣∣∣
t=0

,

is independent of time. It is then easy to obtain the solution to the PDE

U(t) = e−
i
ℏHt.
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H and U(t) has common eigenstates. The evolution of an eigenstate with defi-
nite value of H only picks up a total phase factor. The expectation value ⟨H⟩
is a constant. Indeed, H corresponds to energy.

For a time dependant H(t), we can use the philosophy of integral, and think
H(t) as constant in a small enough time interval δt

U(t+ δt, t) ≈ e−
i
ℏH(t̃)δt,

where t̃ ∈ [t, t + δt]. Then we multiply them together while taking the limit
δt→ 0,

T
(
e−

i
ℏ
∫ t
0
dtH(t)

)
:= lim

δt→0
n→∞

e−
i
ℏH(t̃n)δt · · · e− i

ℏH(t̃1)δt = U(t),

where t̃n > · · · > t̃1 are in each small interval. Note that the notation

T
(
e−

i
ℏ
∫ t
0
dtH(t)

)
should be understood as a whole, the time-ordered multiplicative integral. It
does not mean to take first an additive integral −

∫ t
0
dt iH(t)/ℏ and then the ex-

ponential; the order of operations matter here, since when A,B do not commute,
eA+B ̸= eAeB ̸= eBeA.

We may similarly define the Hamiltonians Hψ(t), HO(t)

Hψ(t) = iℏ
∂Uψ(s, t)

∂s

∣∣∣∣
s=t

, HO(t) = iℏ
∂UO(s, t)

∂s

∣∣∣∣
s=t

.

Equivalently,

iℏ
∂Uψ(t)

∂t
= Hψ(t)Uψ(t), iℏ

∂UO(t)

∂t
= UO(t)HO(t),

and by differentiating U(t) = UO(t)Uψ(t) or eq.(2.1), we find

U†
O(t)H(t)UO(t) = Hψ(t) +HO(t).

The PDE for the states and operators read

iℏ
∂

∂t
|ψ(t)⟩ = Hψ(t)|ψ(t)⟩,

∂

∂t
O(t) =

i

ℏ
[HO(t), O(t)].

Problem 2.1.1. We have assumed in the above that there are only quantum
evolutions for the operator O(t). In practice it is often convenient to consider an
operator At with time dependence not from quantum evolutions (for example
At = Of(t) for some function f). In this case, the total evolved operator is

At(t) = U†
O(t)AtUO(t).

Derive the PDE obeyed by At(t).
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To describe a quantum system, it is thus a key step to identify the Hamil-
tonian operator. When the system has classical limit or classical analog, in the
canonical quantization one simply takes the classical Hamiltonian, replacing
classical variables by quantum operators satisfying the canonical commutation
relation, to produce the quantum Hamiltonian operator. For example, for a
particle moving in one-dimensional potential V (x) whose classical Hamiltonian
is

H =
p2

2m
+ V (x),

the corresponding quantum Hamiltonian operator is

Ĥ =
p̂2

2m
+ V (x̂).

Problem 2.1.2. Suppose that we have a classical system with Hamiltonian

H =

∞∑
a,b=0

Ca,bx
apb =

∞∑
a,b=0

Ca,bp
bxa

where Ca,b are some constants. Since x̂ and p̂ do not commute, there is in
general ambiguity (the order of operators) to perform canonical quantization.
Compute the difference between different orders of operators and

1. Show that the terms with a+ b < 4 does not suffer from such ambiguity.

2. Show that the ambiguity is acceptable for terms with a + b = 4, in the
sense that it only shifts the energy zero point.

3. Show that the ambiguity is no longer acceptable for terms with a+ b > 4.

(Hint: Remember to make your Hamiltonian operator Hermitian.)

2.2 Dynamical pictures

The dynamical pictures are equivalent ways to describe quantum dynamics;
different pictures are quantum analogs of different reference of frames in classical
physics. The picture we discussed in the last section is the most general one:
both the states and observable operators evolve. In this section, we discuss
three most commonly used dynamical pictures. The convention is as before:
observable operators (the lab frame) are governed by the evolution operator
UO(t). The states (the center of mass frame) are governed by the evolution
operator Uψ(t). Measurements are only affected by the relative evolution U(t) =
UO(t)Uψ(t). In the following three pictures, the Hamiltonian corresponding to

the relative evolution H(t) = iℏ∂U(s,t)
∂s

∣∣∣∣
s=t

are taken to be the same, which

guarantees the equivalence of the three pictures.
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2.2.1 Schrodinger picture, the lab frame as reference

� Operators stay still, UO(t) = 1, O(t) = O(0) = O.

� States evolve, Uψ(t) = U(t), |ψ(t)⟩ = U(t)|ψ(0)⟩.

� Schrodinger equation

iℏ
∂

∂t
|ψ(t)⟩ = H(t)|ψ(t)⟩.

2.2.2 Heisenberg picture, the center of mass frame as ref-
erence

� States stay still, Uψ(t) = 1, |ψ(t)⟩ = |ψ(0)⟩.

� Operators evolve, UO(t) = U(t), O(t) = U†(t)OU(t), and eigenstates
|α, t⟩ = U†(t)|α, 0⟩.

� Heisenberg equation

∂

∂t
O(t) =

i

ℏ
[U†(t)H(t)U(t), O(t)].

Note that [U†(t)H(t)U(t),−] is a linear operator acting on the vector
space of operators. It has the same form as the Schrodinger equation: the
time derivative of a vector equals to a linear operator acting on the same
vector. Thus we can immediately write down the solution

O(t) = T
(
e

i
ℏ
∫ t
0
dt [U†(t)H(t)U(t),−]

)
O.

When the Hamiltonian does not depend on time explicitly, it reduces to

O(t) = e
it
ℏ [H,−]O = O +

it

ℏ
[H,O] +

(it)2

2!ℏ2
[H, [H,O]] + . . .

2.2.3 Interaction picture

� Assume that the Hamiltonian can be split into two parts

H(t) = Hf +Hi(t),

whereHf is the time-independent free part which we understand relatively
well, and Hi(t) is the interacting part.

� Operators evolve as UO(t) = e−
i
ℏHf t.

� States evolve as Uψ(t) = UO(t)
†U(t) = e

i
ℏHf tU(t).

� Schwinger-Tomonaga equation

iℏ
∂

∂t
|ψ(t)⟩ = e

i
ℏHf tHi(t)e

− i
ℏHf t|ψ(t)⟩.
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Problem 2.2.1. Although we have been talking about time evolution operators,
the techniques used are in fact quite universal in quantum mechanics, when the
exponential of operators together with a real parameter is involved. Prove the
following famous and useful formulas

1. If AB = BA, use the power expansion of exponential function to prove
that

eAeB = eA+B .

In particular e−AeA = e0 = 1.

2. The Hadamard formula

eABe−A = e[A,−]B =
∑
n

1

n!
[A,−]nB

= B + [A,B] +
1

2
[A, [A,B]] +

1

6
[A, [A, [A,B]]] + · · · .

Similar to the case of the operator evolution, you can consider the dif-
ferential of erABe−rA with respect to the real number r, and then set
r = 1. So we know how the exchange the multiplication order of eA and
B, eAB = e[A,−]BeA.

3. The special Baker-Campbell-Hausdorff formula, assuming that [A,B] com-
mutes with both A and B,

eAeB = e[A,B]/2eA+B .

Consider the differential of erAerBe−r(A+B) with respect to the real num-
ber r, and then set r = 1.

2.3 Path integral

Besides the Hamiltonian approach to determining the quantum evolution, an-
other effective approach is using the path integral. Put it simply, to obtain
the evolution operator U(T ), we may insert the resolution of identity at times
0 = t0 < t1 < t2 < · · · < tn = T

U(T ) = U(tn, tn−1)U(tn, tn−1) · · ·U(t1, t0)

=

∫
dx0 · · · dxn |xn⟩⟨xn|U(tn, tn−1)|xn−1⟩⟨xn−1|U(tn−1, tn−2)|xn−2⟩

⟨xn−2| · · · |xi+1⟩⟨xi+1|U(ti+1, ti)|xi⟩⟨xi| · · ·
· · · |x1⟩⟨x1|U(t1, t0)|x0⟩⟨x0|.

Using the basis in the Heisenberg picture |x, t⟩ = U†(t)|x⟩, the matrix elements
can be rewritten as

⟨x′|U(t′, t)|x⟩ = ⟨x′, t′|x, t⟩.
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This quantity is usually referred to as the propagator, which is the transition
amplitude from spacetime point x, t to x′, t′. Thus the matrix elements of the
evolution operator as above can be put in a more compact and motivating form

⟨xn|U(T )|x0⟩ = ⟨xn, T |x0, 0⟩ =
∫

dx1 · · · dxn−1

n∏
i=1

⟨xi, ti|xi−1, ti−1⟩.

Each sequence (x0, t0), (x1, t1), · · · , (xn, tn) can be viewed as a discrete path
and each path is associated with a complex number

W [{xi, ti}] =
n∏
i=1

⟨xi, ti|xi−1, ti−1⟩.

By summing W [{xi, ti}] over all possible paths one obtains the evolution. This
the key idea of path integral.

In practice, we need to further take the continuum limit, n→ ∞, |ti−ti−1| →
0, such that

� the discrete sequence {xi, ti} becomes a function x(t) of path;

� W [x(t)] is now a functional (function which takes a function as the input
variable) of the path x(t)

� the multi-dimensional integration
∫
dx0 · · · dxn ,

becomes an infinite-dimensional integration, which is usually denoted by∫
D[x(t)] := lim

n→∞

∫
dx0 · · · dxn .

Now the matrix elements of the evolution operator is

⟨x′, T |x, 0⟩ = ⟨x′|U(T )|x⟩ =
∫ x(T )=x′

x(0)=x

D[x(t)]W [x(t)].

It is then intriguing to investigate the form of the functional W [x(t)] associ-
ated to the path x(t). To get some intuition, let’s evaluate the simplest example,
the propagator of a free particle.

⟨x′|e− i
ℏ

p̂2

2mT |x⟩ =
∫

dp ⟨x′|e− i
ℏ

p̂2

2mT |p⟩⟨p|x⟩

=

∫
dp

1

2πℏ
e−

i
ℏ ( p2

2mT−p(x−x′))

=
1

2πℏ

∫
dp e−

iT
2mℏ (p−m(x−x′)

T )2+ i
ℏ

1
2m

(x′−x)2

T

=

√
m

i2πℏT
e

i
ℏ

1
2m

(x′−x)2

T .

24



Note that
1

2
m
(x′ − x)2

T
=

∫ T

0

1

2
mv2dt ,

is the classical action of the free particle along its classical path (v = (x′−x)/T
is a constant). More generally,

W [x(t)] = F e
i
ℏS[x(t)],

where F is a normalization factor (which does not depend on the path) and
S[x(t)] is the classical action of the system. It is a usual convention to absorb
the normalization factor F into the definition of D[x(t)] (as the measure of the
path), namely ∫

D[x(t)] := lim
n→∞

F

∫
dx0 · · · dxn .

Thus

⟨x′, T |x, 0⟩ = ⟨x′|U(T )|x⟩ =
∫ x(T )=x′

x(0)=x

D[x(t)]e
i
ℏS[x(t)].

Let’s check the classical limit (ℏ → 0) to see why the form makes sense.
Recall that the classical path is determined by the stationary point of the action

δS[x(t)] = 0.

As ℏ → 0, eiS/ℏ will oscillate very violently so that most adjacent paths con-
tribute destructively to the path integral. Only near the stationary point
δS[x(t)] = 0, when we deform the path a little bit, the phase remains almost
the same and contribute constructively to the path integral. As a result, in the
classical limit, the classical path is singled out, as desired.

Problem 2.3.1. For a one-dimensional potential V (x) and small time interval
δt, verify that, to the first order of δt,

⟨x′|e− i
ℏHδt|x⟩ ∼ e

i
ℏS ,

where

H =
p̂2

2m
+ V (x̂).

S = Lδt, L =
1

2
mẋ2 − V (x) =

1

2
m

(
x′ − x

δt

)2

− V (x).

(L is the classical Lagrangian.)

To conclude, the dynamics of a quantum system is described by the quantum
evolution operator, which is determined, either by the Hamiltonian operator, or
the action/Lagrangian via path integral. We will show both approaches in the
next section for quantum harmonic oscillator.
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Chapter 3

Harmonic Oscillator

In this chapter, we will study the quantum harmonic oscillator in detail. We
begin by reviewing the canonical quantization procedure. A classical harmonic
oscillator is a particle moving in a one-dimensional quadratic potential. The
classical Hamiltonian is

H =
p2

2m
+

1

2
kx2 =

1

2m

(
p2 +m2ω2x2

)
,

where m is the mass of the particle, k is the spring constant. x, p are the
classical dynamical variables, position and momentum, conjugate to each other.
It is more conventional to use the angular frequency ω =

√
k/m. So a quantum

harmonic oscillator has the Hilbert space with the position states |x⟩ being a
basis, and Hamiltonian

H =
1

2m

(
p̂2 +m2ω2x̂2

)
,

where the position and momentum operators x̂, p̂ are as we discussed in Sec-
tion 1.6, satisfying

[x̂, p̂] = iℏ, x̂|x⟩ = x|x⟩, ⟨x|p̂|ψ⟩ = −iℏ
∂

∂x
⟨x|ψ⟩.

So in the position basis

⟨x|H|ψ⟩ = 1

2m

(
−ℏ2

∂2

∂x2
+m2ω2x2

)
⟨x|ψ⟩.

It is then a straightforward approach to solve the differential equation for the
eigen wavefunctions. However, solving differential equations would be the ulti-
mate backup approach; we will introduce a more elegant operator method, first
developed by Dirac based on earlier work of M. Born and N. Wiener.
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3.1 Operator method

It is a common practice in linear algebra to simplify the problem by forming
new linear combinations of vectors or operators. We now explore along this way.
First, to make the derivation clear, define

P =
p̂√
2m

, X =

√
m

2
ωx̂.

We want to find new operators

A = αX + βP, B = µX + νP,

which can simplify the eigenvalue problem

H = X2 + P 2, [X,P ] =
i

2
ℏω.

We can write the transformation in matrix form

(A,B) = (X,P )

(
α µ
β ν

)
.

So the first requirement is that the matrix T :=

(
α µ
β ν

)
is invertible so that

we can transform back from A,B to X,P . Thus, detT = αν − βµ ̸= 0, and

(X,P ) = (A,B)T−1, T−1 =
1

detT

(
ν −µ
−β α

)
.

Expand the above

X =
1

detT
(νA− βB), P =

1

detT
(−µA+ αB),

and plug them into the Hamiltonian

H =

(
1

detT

)2(
(ν2 + µ2)A2 + (α2 + β2)B2 − (αµ+ βν)(AB +BA)

)
.

The commutation relation of A,B is

[A,B] = [αX + βP, µX + νP ] = (αν − βµ)[X,P ] = detT [X,P ],

just [X,P ] times a non-zero constant. Since H = X2 + P 2 can not be easily
solved, after the transformation to A,B we want to make the coefficients of the
squared terms be zero

α2 + β2 = 0, µ2 + ν2 = 0.

So we choose
β = iα, ν = −iµ.

27



Then detT = −2iαµ ̸= 0. Plug these back into the Hamiltonian

H =
1

2αµ
(AB +BA) =

1

2αµ
(BA+ [A,B] +BA)

=
1

αµ
BA− i[X,P ] =

B

µ

A

α
+

1

2
ℏω.

Define the annihilation operator

a :=
1√
ℏω

A

α
=

1√
ℏω

(X + iP ) =

√
mω

2ℏ
x̂+ i

p̂√
2mℏω

,

and its Hermitian conjugate the creation operator (the meaning of the names
will be clear shortly)

a† =
1√
ℏω

B

µ
=

1√
ℏω

(X − iP ) =

√
mω

2ℏ
x̂− i

p̂√
2mℏω

.

a, a† together are called the ladder operators, with commutation relation

[a, a†] = 1.

We now study the properties of the ladder operators to see how they greatly
simplify the Hamiltonian

H = ℏω(a†a+
1

2
).

1. We call the Hermitian operator

N = a†a

as the number operator. There are the following commutation relations

[N, a] = −a, [N, a†] = a†.

Suppose that |ϕn⟩ is an eigenstate of N , N |ϕn⟩ = n|ϕn⟩.

Na|ϕn⟩ = (aN − a)|ϕn⟩ = (n− 1)a|ϕn⟩,

namely if a|ϕn⟩ ≠ 0, it is an eigenstate of N with eigenvalue n− 1. Simi-
larly,

Na†|ϕn⟩ = (a†N + a†)|ϕn⟩ = (n+ 1)a†|ϕn⟩,
if a†|ϕn⟩ ≠ 0 it is an eigenstate of N with eigenvalue n+ 1.

2. N = a†a is a positive semi-definite operator, namely for any state |ϕ⟩,
⟨ϕ|N |ϕ⟩ = ⟨aϕ|aϕ⟩ ≥ 0. Thus the eigenvalues of N must be non-negative.
However, each application of a to an eigenstate reduces the eigenvalue
by 1; such process has to stop after finite steps. In other words, there
must exist a non-zero state |ψ⟩ such that a|ψ⟩ = 0 is a zero state vector.
N |ψ⟩ = a†a|ψ⟩ = 0, namely, |ψ⟩ is an eigenstate of N with eigenvalue
0. Since a|ψ⟩ = 0 ⇒ N |ψ⟩ = 0, for an eigenstate |ϕn⟩ with non-zero
eigenvalue it is not possible that a|ϕn⟩ = 0. Therefore, the eigenvalues
of N can only be non-negative integers; otherwise, by applying a the
eigenvalue will never reach zero thus never stop decreasing, contradiction.
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3. How many (linear independent) eigenstates are there with eigenvalue 0?
This question can not be answered given only the algebraic properties of
a. However, the differential equation

⟨x|a|ψ⟩ =
√
mω

2ℏ
xψ(x) + i

−iℏ√
2mℏω

∂ψ(x)

∂x
= 0

is easy to solve. The general solution is

ψ(x) = Ce−
mω
2ℏ x

2

.

It is the ground state of the harmonic oscillator, which is non-degenerate.
Denote by |0⟩ the normalized ground state

⟨x|0⟩ =
(mω
πℏ

)1/4
e−

mω
2ℏ x

2

.

4. By repeated applying a† to the ground state |0⟩ we obtain the excited
eigenstates. We can also prove that all eigenstates can be obtained this
way. Let |ϕn⟩ be an eigenstate with eigenvalue n. an|ϕn⟩ is then a ground
state. We have shown that the ground state is non-degenerate, thus there
must be a nonzero constant C such that an|ϕn⟩ = C|0⟩. Then we evaluate

(a†)nan|ϕn⟩ = (a†)n−1Nan−1|ϕn⟩
= 1× (a†)n−2Nan−2|ϕn⟩
= 1× 2× (a†)n−3Nan−3|ϕn⟩
= · · · = n!|ϕn⟩ = (a†)nC|0⟩.

Thus, |ϕn⟩ = C
n! (a

†)n|0⟩. Now we compute the norm of (a†)n|0⟩ to fix nor-
malization. Recall the “differential” property of commutator, [a, (a†)n] =
n(a†)n−1.

⟨0|an(a†)n|0⟩ = ⟨0|an−1a(a†)n|0⟩
= ⟨0|an−1(n(a†)n−1 + (a†)na)|0⟩
= n⟨0|an−1(a†)n−1|0⟩ = · · · = n!.

Therefore we can define the number basis or occupation basis,

|n⟩ = (a†)n√
n!

|0⟩,

which are orthonormal eigenstates

N |n⟩ = n|n⟩, ⟨m|n⟩ = δmn.

In this basis

a|n⟩ =
√
n|n− 1⟩, a†|n⟩ =

√
n+ 1|n+ 1⟩.
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Now we have solved the quantum harmonic oscillator whose energy eigen-
states are |n⟩ with energy ℏω(n+1/2). Physically, we think that in a harmonic
oscillator there is a minimal energy quantum ℏω. a† creates a quantum, a an-
nihilates a quantum and N = a†a measures the total number of quanta, hence
their names. The groundstate |0⟩ is free of quanta, thus also called the vacuum
state. The excited state |n⟩ is obtained by creating n quanta from the vacuum.

Passing to position basis, we have

⟨x|n⟩ = 1√
2nn!

(mω
πℏ

)1/4(√mω

ℏ
x− ∂

∂(
√

mω
ℏ x)

)n
e−

1
2 (
√

mω
ℏ x)

2

.

It is easy to see these wavefunctions have the form of a polynomial times the
exponential. The polynomials arising this way are known as the Hermite poly-
nomials

Hn(x) = e
1
2x

2

(
x− ∂

∂x

)n
e−

1
2x

2

,

or equivalently the more standard definition

Hn(x) = ex
2

(
− ∂

∂x

)n
e−x

2

.

So that the eigen wavefunctions are

⟨x|n⟩ = 1√
2nn!

(mω
πℏ

)1/4
Hn

(√
mω

ℏ
x

)
e−

1
2 (
√

mω
ℏ x)

2

.

Problem 3.1.1. Verify the two definitions of Hermite polynomials are equiva-
lent. (Hint: Use mathematical induction.)

We then briefly discuss the eigenstates of a, also known as the coherent
states. Similar to the trick we have used when deriving the eigenstates of p̂ from
the commutation relation, now we have a state |0⟩ such that a|0⟩ = 0, thus for
any function f , the action of a on the state f(a†)|0⟩ is clear

af(a†)|0⟩ = (f ′(a†) + f(a†)a)|0⟩ = f ′(a†)|0⟩.

Thus we immediately obtain that the eigenstate of a should be given by the
exponential function

|α⟩ = eαa
†

e|α|2/2
|0⟩ = e−

|α|2
2

∑
n

αn√
n!
|n⟩, a|α⟩ = α|α⟩,

where the denominator is chosen to normalize |α⟩. Alternatively, by solving the
differential equation

⟨x|a|α⟩ =
√
mω

2ℏ
x⟨x|α⟩+ i

−iℏ√
2mℏω

∂⟨x|α⟩
∂x

= α⟨x|α⟩
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we obtain

⟨x|α⟩ =
(mω
πℏ

)1/4
e−(

√
mω
2ℏ x−α)

2− 1
2α(α

∗−α).

The nontrivial normalization here is obtained by considering both ⟨α|α⟩ = 1

and ⟨0|α⟩ = e−
|α|2
2 . The coherent states have the most “classical” behavior; we

list a few. Express α in polar form α = |α|eiθ.

1. Expectation values

⟨α|H|α⟩ = ℏω(|α|2 + 1

2
),

⟨α|x̂|α⟩ = 1

2

√
2ℏ
mω

⟨α|a+ a†|α⟩ = 1

2

√
2ℏ
mω

⟨α|α+ α∗|α⟩ =
√

2ℏ
mω

|α| cos θ,

⟨α|x̂2|α⟩ = ⟨α|x̂|α⟩2 + ℏ
2mω

,

⟨α|p̂|α⟩ =
√
2mℏω
2i

⟨α|a− a†|α⟩ =
√
2mℏω|α| sin θ,

⟨α|p̂2|α⟩ = ⟨α|p̂|α⟩2 + mℏω
2

.

We see that

⟨(∆x̂)2⟩⟨(∆p̂)2⟩ = ℏ2

4
,

i.e., the coherent state minimizes the uncertainty relation.

2. Time evolution

e−
i
ℏHt|α⟩ = e−

|α|2
2

∑
n

αn√
n!
e−iω(n+ 1

2 )t|n⟩ = e−iωt/2|αe−iωt⟩.

Therefore,

⟨x̂(t)⟩ =
√

2ℏ
mω

|α| cos(θ − ωt), ⟨p̂(t)⟩ =
√
2mℏω|α| sin(θ − ωt).

The expectation values of position and momentum are just like the posi-
tion and momentum of a classical harmonic oscillator.

Problem 3.1.2. Consider, also, the eigen functions of the creation operator a†.

1. Solve in the position basis ⟨x|a†|β⟩ = β⟨x|β⟩.

2. Try to solve in the occupation basis |n⟩. What do you find? Use the eigen
function ⟨x|β⟩ you obtained in the previous step to explain why it is the
case.
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3.2 Path integral method

Now we switch to the path integral quantization. In this approach one borrows
the Lagrangian or action from classical mechanics and then perform the mysteri-
ous path integral to obtain the dynamics of the corresponding quantum system.
As an infinite dimensional integration, in general the path integral is extremely
difficult to carry out. Fortunately, if the action is quadratic, the integrant is
Gaussian, and we know how to perform the Gaussian integral exactly. This
is the case of harmonic oscillator. However, we will not do the lengthy exact
integration here; instead, by analyzing the form of path integral with respect to
a general quadratic action, and requiring it to satisfy the composition rule, we
obtain (almost) the solution.

The classical path x̄(t) is the stationary point of the action S[x(t)]

δS

δx(t)

∣∣∣
x̄(t)

= 0.

Expand the action S[x(t)] around its stationary point

S[x̄(t) + δx(t)] = S[x̄(t)] +
1

2

∫
dt1 dt2

δ2S

δx(t1)δx(t2)

∣∣∣
x̄(t)

δx(t1)δx(t2) +O(δx3).

If you feel unconformable with the variational formula, just compare it with a
function f(xi) with multiple input variables indexed by i. Its Taylor expansion
is

f(xi + dxi ) =
∑
n

1

n!

∑
i1,...,in

∂nf

∂xi1 · · · ∂xin

∣∣∣
xi

dxi1 · · · dxin .

In the variational case, the time t serves as the continuum index and summation
is the integral over t.

For a quadratic action, the expansion stops at second order, thus the path
integral becomes ∫

D[x(t)]e
i
ℏS[x(t)] = F e

i
ℏS[x̄(t)],

where the prefactor is

F =

∫
D[δx(t)] exp

(
i

2ℏ

∫
dt1 dt2

δ2S

δx(t1)δx(t2)

∣∣∣
x̄(t)

δx(t1)δx(t2)

)
.

Since

1. S is quadratic; its second order variation no longer depends on the path
(think about the second derivative of a quadratic polynomial), namely
evaluated at any path x(t) we always have the same function b(t1, t2) as
the second order variation

δ2S

δx(t1)δx(t2)

∣∣∣
x(t)

= b(t1, t2),

where b(t1, t2) is determined by the defining parameters (can be time de-
pendant) of S;
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2. δx(t) = x(t)− x̄(t) has trivial boundary condition

δx(tinitial) = δx(tfinal) = 0;

we conclude that F = F (tfinal, tinitial) only depends on the initial and final
times but not on the classical path (including the boundary conditions). For
simplicity, from now on we assume that the system is time translation invariant,
then F = F (tfinal − tinitial) only depends on the time interval.

Now consider three time points 0, T1, T1 + T2. The propagator satisfies the
composition rule

⟨xc, T1 + T2|xa, 0⟩ =
∫

dxb ⟨xc, T1 + T2|xb, T1⟩⟨xb, T1|xa, 0⟩

=

∫
dxb ⟨xc, T2|xb, 0⟩⟨xb, T1|xa, 0⟩.

In terms of path integrals

F (T1 + T2)e
i
ℏ S̄(xc,xa,T1+T2) = F (T1)F (T2)

∫
dxb e

i
ℏ (S̄(xc,xb,T2)+S̄(xb,xa,T1)),

where we use the notation S̄(x′, x, t) for S[x̄(t)] with classical path satisfying
boundary condition x̄(0) = x, x̄(t) = x′. To obtain the classical path from xa, 0
to xc, T1 + T2, we can consider the path consisting of two segments, classical
path from xa, 0 to xb, T1 and classical path from xb, T1 to xc, T1+T2. The action
of the composed path is

S(xc, xb, xa, T2, T1) = S̄(xc, xb, T2) + S̄(xb, xa, T1).

The variation of the above action along the two segments of classical paths is
already zero, so we only need to vary it with respect to xb to obtain the total
classical path,

∂S̄(xc, xb, T2)

∂xb
+
∂S̄(xb, xa, T1)

∂xb
= 0.

The above equation determines xb = x̄b(xc, xa) as an implicit function of xa, xc,
and we have

S̄(xc, xa, T1 + T2) = S̄(xc, x̄b(xc, xa), T2) + S̄(x̄b(xc, xa), xa, T1).

Now consider the integral, expanding xb around x̄b(xc, xa). We further introduce
the short-hand notations S̄2 = S̄(xc, xb, T2), S̄1 = S̄(xb, xa, T1) and S̄1+2 =
S̄(xc, xa, T1 + T2). ∫

dxb e
i
ℏ (S̄2+S̄1)

= e
i
ℏ S̄1+2

∫
dxb e

i
2ℏ

(
∂2S̄2
∂x2

b

+
∂2S̄1
∂x2

b

)
(xb−x̄b)

2

= e
i
ℏ S̄1+2

√√√√ i2πℏ
∂2S̄2

∂x2
b
+ ∂2S̄1

∂x2
b

.
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Thus,

F (T1 + T2)

F (T1)F (T2)
=

√√√√ i2πℏ
∂2S̄2

∂x2
b
+ ∂2S̄1

∂x2
b

.

Examine the following differentials

∂S̄1+2

∂xc
=
∂S̄2

∂xc
+
∂S̄2

∂xb

∣∣∣
x̄b

∂x̄b
∂xc

+
∂S̄1

∂xb

∣∣∣
x̄b

∂x̄b
∂xc

=
∂S̄2

∂xc
,

∂2S̄1+2

∂xc∂xa
=

∂2S̄2

∂xc∂xb

∂x̄b
∂xa

,

0 =
∂

∂xa

(
∂S̄2

∂xb

∣∣∣
x̄b

+
∂S̄1

∂xb

∣∣∣
x̄b

)
=

(
∂2S̄2

∂x2b
+
∂2S̄1

∂x2b

)
∂x̄b
∂xa

+
∂2S̄1

∂xb∂xa
.

We obtain

F (T1 + T2)

F (T1)F (T2)
=

√√√√−i2πℏ
∂2S̄1+2

∂xc∂xa

∂2S̄1

∂xb∂xa

∂2S̄2

∂xc∂xb

.

Again since the action is quadratic, the second order derivatives only depends

on the time interval, so the function f(T ) := F (T )/

√
i

2πℏ
∂2S̄(x′,x,T )

∂x′∂x satisfies

f(T1)f(T2) = f(T1 + T2) and has to be an exponential function, thus

F (T ) =

√
i

2πℏ
∂2S̄(x′, x, T )

∂x′∂x
e

i
ℏCT .

∂2S̄(x′,x,T )
∂x′∂x is known as the van Vleck determinant (reducing to just a number in

one dimension in our case). At this stage we can only say that C has to be real,
otherwise the norm of the propagator either explodes or vanishes as T → ∞,
contradicting with unitarity (or conservation of probability). But effectively
we can combine CT into the classical action, so the physical meaning of C is
merely a constant energy shift and should be able to be dropped safely without
affecting physics. Indeed, exact computation shows that C = 0. Finally we
obtain the van Vleck-Pauli propagator for quadratic action

⟨x′, T |x, 0⟩ =
√

i

2πℏ
∂2S̄(x′, x, T )

∂x′∂x
e

i
ℏ S̄(x

′,x,T ).

Note that when the higher order terms around the classical path does not exactly
vanish but negligible, for example when ℏ → 0 or T → 0, the above serves as a
good asymptotic approximation, thus it is also referred to as the semi-classical
propagator or short-time propagator in the literature.

We are now ready to compute the propagator of harmonic oscillator, and all
we need to do is to find the classical path x̄(t) with respect to the boundary
condition x̄(0) = x, x̄(T ) = x′. Due to the periodic nature of the classical
solution, we like to assume that 0 < T < π/ω. Then the desired classical path
is

x̄(t) = x′
sinωt

sinωT
+ x

sin(ωt+ π − ωT )

sin(π − ωT )
.
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Thus the action is

S[x̄(t)] =

∫ T

0

dt
1

2
m

(
dx̄

dt

)2

− 1

2
mω2x̄2

=
mω

2 sinωT

(
(x2 + x′2) cosωT − 2xx′

)
,

and
∂2S

∂x∂x′
= − mω

sinωT
.

Therefore, the propagator is

⟨x′, T |x, 0⟩ =
√

mω

i2πℏ sinωT
e

imω
2ℏ sinωT ((x

2+x′2) cosωT−2xx′).

To obtain eigen energies and compare with the results in the last section, we
need to find the eigen functions of the propagator∫

dx ⟨x′, T |x, 0⟩ψ(x) = e−
i
ℏETψ(x′),

or equivalently, a decomposition of the propagator

⟨x′, T |x, 0⟩ =
∑
n

ϕn(x
′)ϕ∗n(x)e

− i
ℏEnT ,

in terms of a complete orthonormal set of functions ϕn. By Mehler formula

1√
1− ρ2

exp

(
−ρ

2(x2 + y2)− 2ρxy

1− ρ2

)
=
∑
n

(ρ/2)n

n!
Hn(x)Hn(y),

it is easy to show ⟨x|n⟩ as defined in the last section decompose the propagator.
The harmonic oscillator propagator is thus also called the Mehler kernel.

Problem 3.2.1. Consider a harmonic oscillator in the gravitational field

H =
p̂2

2m
+

1

2
mω2x̂2 −mgx̂.

Find its energy eigen values and eigen states. Also compute the propagator
⟨x′, T |x, 0⟩.
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Chapter 4

Symmetry and Conserved
Quantities

You may have learned in your middle school Newtonian mechanics that when
the total external force is zero, the momentum of the system is conserved. Later
in undergraduate analytic mechanics course, the statement becomes that when
the Hamiltonian/Lagrangian of the system does not depend on coordinates, the
corresponding momenta are conserved. In this chapter, we are going to discuss
the corresponding formulation in quantum mechanics.

Force is an essential notion in Newtonian mechanics, but becomes deprecated
in analytic mechanics. It is represented by the differential of the potential

F = −∂V
∂q

.

So independence of coordinates means zero force. In quantum mechanics, we
abandoned even more notions in classical mechanics, and introduced quantum
exclusive notions such as superposition. We want to answer the two questions:

� The “independence of coordinates” statement still makes sense in quantum
mechanics, but only partially. In general, the Hamiltonian is an operator
and may act on degrees of freedom beyond coordinates. How to formulate
“independence of coordinates” in general operator language?

� The notion of “conserved quantity” has to be generalized because in quan-
tum mechanics any quantity has to be the result of measurements. How
to formulate “conserved quantity” in terms of eigenvalue and eigenstate
(eigensubspace)?

Before going into details, let’s try to answer the questions from only the basic
principles of quantum mechanics. First, any measurable quantity should arise as
the eigenvalue of some operator. Then, what does it mean for this quantity and
this operator to be conserved? In the Hamiltonian approach, this question can
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be understood in different pictures. In the Schrodinger picture, the stationary
states that only pick up a phase factor under time evolution are the eigenstates
of the Hamiltonian H. These states having some quantities conserved means
that they should be the eigenstates of the corresponding observable operator O.
We conclude that H and O have common eigenstates, thus

[H,O] = 0.

Alternatively, in the Heisenberg picture, one immediately arrives at

0 =
∂O(t)

∂t
=

i

ℏ
[H,O(t)].

Back to the classical example of coordinates and momenta, in quantum mechan-
ics conserved momentum means

[H, p̂] = 0,

and again use the “differential” property of commutator,

[H, p̂] = iℏ
∂H

∂x
= 0,

which is indeed consistent with classical mechanics. Now we figured out that

An observable is conserved when its operator commutes with the
Hamiltonian.

But, the relation to coordinates is not satisfactory enough and we will discuss
more in the next section.

Another complicity in quantum mechanics is that when there are several
conserved observables, say A,B, in the sense

[H,A] = 0, [H,B] = 0.

But A,B are not compatible
[A,B] ̸= 0.

In this case we can not view A,B as conserved quantities respectively, but have
to consider them as a whole. The angular momentum in three dimensions is
such an example, which will also be discussed in this chapter.

In classical mechanics, many systems can be fully solved by finding all the
conserved quantities. It remains true in quantum mechanics. Now what we
really need to find is all the operators that commute with the Hamiltonian

A = {A|[H,A] = 0}.

Such A is the so called symmetry of the system. By studying the algebraic prop-
erties of these operators, we could extract most (and sometimes all) information
of the system. In many cases, A is closed related to the notion of group. We
will finish this chapter by a brief introduction to group theory, while discussing
some discrete symmetries.
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4.1 Space-time translation, energy and momen-
tum

We have shown that conserved momentum means [H, p̂] = 0, then by the canon-
ical commutation relation [x̂, p̂] = iℏ one concludes that H is independent of x.
However, [x̂, p̂] = iℏ is not a natural assumption in the discussion of symmetry
and conserved quantities. We try to introduce a more direct and more general
point of view.

First, recall our discussion on the evolution and Hamiltonian operator. We
are particularly interested in the energy conserved case, and we have the follow-
ing facts:

� The evolution operator translates time

U(t)|ψ(t0)⟩ = |ψ(t0 + t)⟩.

� The evolution operator is the exponential of the Hamiltonian

U(t) = e−
i
ℏHt.

� Hamiltonian gives the infinitesimal evolution

U(dt) = 1− i

ℏ
Hdt + o(dt) ,

and is a conserved quantity, the energy.

It worths noting the difference between time and space in non-relativistic quan-
tum mechanics: time is not quantized, only a parameter and not an operator;
the states at different times are defined by the evolution operator, and in general
do not form an orthonormal basis. On the other hand, space is quantized and
we have position operator x̂ and orthonormal position states |x⟩ as the eigen-

state of x̂. Nonetheless, it is a natural and reasonable conjecture that e−
i
ℏ p̂∆x

translates space. Let’s calculate

e−
i
ℏ p̂∆x|x⟩ =

∫
dp e−

i
ℏp∆x|p⟩⟨p|x⟩

=

∫
dp

1√
2πℏ

e−
i
ℏp(x+∆x)|p⟩

= |x+∆x⟩.

Problem 4.1.1. Verify that e−
i
ℏ p̂∆x translates space from the operator point

of view by calculating

e−
i
ℏ p̂∆xx̂e

i
ℏ p̂∆x.

Therefore, space translation and momentum has the similar three properties
as time translation and energy. We are now ready to conclude the general
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picture. Suppose that there is a series of unitary operators U(r) parametrized
by a real parameter r ∈ R, satisfying

U(r)U(s) = U(r + s).

We can think U(r) as translating the parameter r.

Problem 4.1.2. Verify the properties U(r)U(s) = U(s)U(r), U(0) = 1 and
U(−r) = U†(r).

Following a similar derivation as we treat the evolution operator, one can
find that

A := i
∂U(r)

∂r
U†(r) = i lim

ϵ→0

U(r + ϵ)− U(r)

ϵ
U†(r) = i lim

ϵ→0

U(ϵ)− 1

ϵ
.

is an Hermitian operator that no longer depends on r and

U(r) = e−iAr.

U(r) is called a one-parameter unitary group (one-dimensional Lie group) and
A is the infinitesimal generator of U(r) (one-dimensional Lie algebra). Now the
story goes

1. “The Hamiltonian H is independent of parameter r”, means the same
thing as “H is invariant under translation of r”, namely

U†(r)HU(r) = H, [H,U(r)] = 0.

2. Consequently, the generator A commutes with the Hamiltonian

[H,A] = 0,

and corresponds to the conserved quantity conjugate to the parameter r.

Problem 4.1.3. Assume that A generates the translation of real parameter r,
and in addition, the states defined by

|r⟩ := e−iAr|0⟩,

do form an orthonormal basis so that

r̂ :=

∫
dr |r⟩r⟨r|,

is a valid operator. Compute the commutator

[r̂, A].

Is this a more natural way to motivate the fundamental commutation relation,
comparing to the canonical quantization?
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Besides time and energy, position and momentum, another typical example
of the above story is angle and angular momentum (in two dimensions). If
we try to understand angular momentum in three or more dimensions, we are
forced to face the problem of non-compatible conserved quantities, which will
be investigated shortly.

One may ask the reversed question, if a system is known to have a conserved
quantity, is there always a parameter on which the Hamiltonian does not de-
pend? Unfortunately the answer is no. There are many more different variants
of conserved quantities (and symmetries) than Lie groups can cover. We will
check a few after the study of angular momentum.

4.2 Rotation and angular momentum

After fixing the center, in two-dimensional space, we only need one parame-
ter to describe rotation; however, in three-dimensional space, we need three
parameters, two describing the direction of the axis, and one describing the
angle. If the order of two successive rotations are exchanged, the result is the
same in two dimensions, but in general different in three dimensions. Such non-
commutative nature remains in quantum world, and, as a result, leading to the
non-compatibility between the three components of angular momentum.

Let’s begin with the quantization of angular momentum in two dimensions.
We expect

L̂z = r̂ × p̂ = x̂p̂y − ŷp̂x

to be the generator of rotation, namely we want to verify

e−
i
ℏ L̂zθ|x, y⟩ = |x cos θ − y sin θ, x sin θ + y cos θ⟩.

If we try to apply the operator directly, the following difficulties arise.

1. Since x̂p̂y does not commute with ŷp̂x, the eigenstates of L̂ is totally
different from those of x̂ or p̂.

2. You may then want to turn addition in the exponent to multiplication

e−
i
ℏ θL̂z

?
= e−

i
ℏ θx̂p̂ye

i
ℏ θŷp̂x ,

and then work with position and momentum basis. However, since the
two terms do not commute, there is an correction to the above consisting
of infinite terms. (The Baker-Campbell-Hausdorff formula

eAeB = eA+B+ 1
2 [A,B]+ 1

12 [A,[A,B]]− 1
12 [B,[A,B]]+···.

The “· · · ” indicates terms involving higher commutators of A and B.)

To bypass these difficulties, a great trick is to study infinitesimal transformations
(θ → 0), in which case the commutator corrections are of second or higher orders
of θ.
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Up to the first order of dθ ,

(1− i

ℏ
L̂zdθ )|x, y⟩ = (1− i

ℏ
p̂yxdθ +

i

ℏ
p̂xydθ )|x, y⟩

= (1− i

ℏ
p̂yxdθ )(1 +

i

ℏ
p̂xydθ )|x, y⟩.

Since p̂x, p̂y generate translations,

(1− i

ℏ
L̂dθ )|x, y⟩ = |x− ydθ , y + xdθ ⟩.

Thus if we introduce two functions X(θ), Y (θ)

|X(θ), Y (θ)⟩ = e−
i
ℏ L̂zθ|x, y⟩.

They satisfy the differential equations

dX

dθ
= −Y, dY

dθ
= X,

with initial conditions
X(0) = x, Y (0) = y.

The solution is indeed

|X(θ), Y (θ)⟩ = |x cos θ − y sin θ, x sin θ + y cos θ⟩.

So, L̂z indeed generates rotation around the z axis. It is completely analogical
in three dimensions that L̂x = ŷp̂z − ẑp̂y, L̂y = ẑp̂x − x̂p̂z generates rotation
around the x and y axes. Before studying a general rotation, we first compute
the commutation relations between the three components of angular momentum.
Use the compact notation

L̂i = ϵijkr̂j p̂k,

which assumes Einstein’s rule of summation over repeated indices. ϵijk is the
totally anti-symmetric tensor, ϵijk = −ϵjik = −ϵikj , and ϵxyz = 1.

[L̂i, L̂j ] = ϵimnϵjkl[r̂mp̂n, r̂kp̂l]

= ϵimnϵjkl([r̂mp̂n, r̂k]p̂l + r̂k[r̂mp̂n, p̂l])

= iℏϵimnϵjkl(−δnkr̂mp̂l + δmlr̂kp̂n)

= −iℏϵimkϵjklr̂mp̂l + iℏϵilnϵjklr̂kp̂n
= −iℏϵimkϵjknr̂mp̂n + iℏϵilnϵjmlr̂mp̂n
= iℏϵimkϵjnkr̂mp̂n − iℏϵinlϵjmlr̂mp̂n
= iℏ(ϵimkϵjnk − ϵinkϵjmk)r̂mp̂n.

Use the identity ϵimkϵjnk = δijδmn − δinδjm.

[L̂i, L̂j ] = iℏ(−δinδjm + δimδjn)r̂mp̂n

= iℏϵijkϵmnkr̂mp̂n
= iℏϵijkL̂k.
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Indeed they do not commute. We want to emphasize that here we considered
only a special case, the orbital angular momentum, i.e., the rotation motion in
real space. It turns out particles carry intrinsic angular momentum that is not
related to real space motion and is truly quantum mechanical degree of freedom
with no classical counterpart. Although we derive the commutation relations
of angular momentum from those of position and momentum operators, for
fundamental reasons, we should use the commutation relations as the defining
properties of quantum angular momentum; as we will see soon, the commutation
relations controls the rotation behavior.

Now, how about a general rotation around an arbitrary axis? In fact, a
general rotation can always be decomposed to a sequence of rotations around
x, y, z axes. Suppose we want to express a rotation by angle α around the unit
vector n = (sin θ cosϕ, sin θ sinϕ, cos θ). What we can do is to

1. First rotate n to the z axis, that is a rotation around z by −ϕ followed
by a rotation around y by −θ;

2. Second rotate around z by α;

3. Finally rotate z back to n, that is a rotation around y by θ followed by a
rotation around z by ϕ.

Let’s denote the generator of rotation around n by L̂n, then

e−
i
ℏ L̂nα = e−

i
ℏ L̂zϕe−

i
ℏ L̂yθe−

i
ℏ L̂zαe

i
ℏ L̂yθe

i
ℏ L̂zϕ.

Again, we can determine L̂n by considering infinitesimal α, which leads to

L̂n = e−
i
ℏ L̂zϕe−

i
ℏ L̂yθL̂ze

i
ℏ L̂yθe

i
ℏ L̂zϕ.

Remember that we have explored how to solve the operator of the form

eAtBe−At = e[A,−]tB

when we study quantum evolutions; it resembles an operator in the Heisenberg
picture. Thus

L̂n = e−
i
ℏ [̂Lz,−]ϕe−

i
ℏ [̂Ly,−]θL̂z.

It is not hard to see the action of [Ly,−] just swaps Lz and Lx, so we have

L̂n = e−
i
ℏ [̂Lz,−]ϕe−

i
ℏ [̂Ly,−]θL̂z

= e−
i
ℏ [̂Lz,−]ϕ(L̂z cos θ + L̂x sin θ)

= L̂z cos θ + L̂x sin θ cosϕ+ L̂y sin θ sinϕ.

It agrees with the component of the angular momentum along n, which in
classical mechanics is L · n = Lx sin θ cosϕ + Ly sin θ sinϕ + Lz cos θ. Thus

we can write L̂n = L̂ · n. Note that in the above we did not use the orbital
angular momentum expression L̂i = ϵijkr̂j p̂k; we used only the fundamental
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commutation relation of angular momentum and thus the above discussion also
applies to intrinsic angular momentum. Conversely, assuming the rotation rules,
one can derive the fundamental commutation relation of the generators; this
relation in general is known as the Lie group – Lie algebra correspondence, and
in the rotation case the SO(3) Lie group and su(2) Lie algebra.

Problem 4.2.1. The rotation in three-dimensional space can be described by
3 × 3 orthogonal matrices with determinant 1, hence the name SO(3) (special
orthogonal group of dimension 3).

1. Write down the 3× 3 matrices Rx(α), Ry(α), Rz(α) for rotations around
x, y, z axes by angle α.

2. Assuming that α is small, find the generators Gi, as 3 × 3 matrices, of
infinitesimal rotations

Ri(α) = 1 + αGi +O(α2), i = x, y, z.

3. Calculate the commutators between Gi and compare them to those of the
angular momentum operators L̂i.

The total angular momentum consists of two parts Ji = L̂i + Si, where
L̂i = ϵijkr̂j p̂k is the orbital angular momentum and Si is the intrinsic angular
momentum or spin. In non-relativistic quantum mechanics, the origin of intrin-
sic angular momentum can not be explained; it is observed in experiments and
put into theory by hand. Like the orbital one, the total and intrinsic angular
momentum both satisfy the commutation relation

[Ji, Jj ] = iℏϵijkJk, [Si, Sj ] = iℏϵijkSk.

L̂i acts on the position space, whose eigenstates can be found by solving the
corresponding differential equations (we will discuss it later). But for the spin
Si, we don’t even know, a priori, which Hilbert space it is acting on. What we
know is only that they are angular momentum, thus should generate rotation,
or equivalently, satisfy the fundamental commutation relation. So our question
here is to identify the proper Hilbert space V such that Ji or Si are operators
acting on V that satisfy the commutation relation. In more abstract language,
the question is to find the representation of Lie algebra or Lie group describing
the desired symmetry (rotation here). More precisely, we want to find the
smallest Hilbert space V to realize the commutation relation, in the sense there
is no subspace M ⫋ V such that JiM ⊂ M except the zero space. In this
process, you can feel how powerful the algebraic relation is.

First, since Jx, Jy and Jz do not commute, there is no simultaneous eigen-
state of all three components. We can, at most, choose the eigenstates of one
of the three, which is by convention usually Jz, and then express the other two,
Jx, Jy, in terms of the eigenstates of Jz. Moreover, if there is some operator
which is a combination of Jx, Jy and commutes with Jz, then we may work in
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the common eigensubspace of this operator and Jz, which could greatly simplify
the problem.

[Jz,−] swaps Jx and Jy so an operator linear in Jx and Jy won’t commute
with Jz. Let’s try the quadratic terms J2

x , J
2
y , JxJy, JyJx.

[Jz, J
2
x ] = [Jz, Jx]Jx + Jx[Jz, Jx] = iℏ(JyJx + JxJy),

[Jz, J
2
y ] = [Jz, Jy]Jy + Jy[Jz, Jy] = −iℏ(JxJy + JyJx),

[Jz, JxJy] = [Jz, Jx]Jy + Jx[Jz, Jy] = iℏ(J2
y − J2

x),

[Jz, JyJx] = [Jz, Jy]Jx + Jy[Jz, Jx] = iℏ(J2
y − J2

x).

JxJy − JyJx does not help because it is simply proportional to Jz. J
2
x + J2

y is
the operator we seek for, but it is not good enough. Since we want a Hilbert
(sub)space on which all of Jx, Jy, Jz act on, we take the sum of all three com-
ponents squared

J2 := J2
x + J2

y + J2
z .

It is not hard to see J2 commutes with all three components Jx, Jy, Jz. The
action of Jx, Jy or Jz does not change the eigenvalue of J2, namely, they acts
within an eigensubspace. So, we like to take an eigensubspace of J2, and then
decompose the eigensubspace according to the eigenvalues of Jz. Now we are
facing the eigenvalue problem

J2 − J2
z = J2

x + J2
y .

You see that it is quite similar to the harmonic oscillator problem. We attempt
to define

J+ = Jx + iJy, J− = Jx − iJy.

Their commutation relations with Jz are

[Jz, J+] = ℏJ+
[Jz, J−] = −ℏJ−.

Thus, given an eigenstate |ψ⟩ of Jz, Jz|ψ⟩ = mℏ|ψ⟩,

JzJ+|ψ⟩ = (J+Jz + ℏJ+)|ψ⟩ = (m+ 1)ℏJ+|ψ⟩.

If J+|ψ⟩ is not zero, its eigenvalue (angular momentum along z) is increased by
one unit of ℏ. (The important constant ℏ now clarifies its physical meaning as the
quantum of angular momentum.) Similarly, J− decreases angular momentum
along z by ℏ.

Problem 4.2.2. In a more general setting, verify the following statement: given
an operator A, the eigen operator of [A,−] with eigenvalue λ translates the
eigenvalue of A by λ. Find the eigen operator of [Jz,−] in the operator space
spanned by Jx Jy and Jz.
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Like in the harmonic oscillator problem, the non-negativity of J2
x + J2

y =
J2 − J2

z gives a bound that constraints the possible range of Jz eigenvalues.
Clearly Jz should have both an upper and lower bound since J2 −m2ℏ2 ≥ 0.

For the largest eigenvalue mmaxℏ and eigenstate |ψmax⟩, we must have

J+|ψmax⟩ = (Jx + iJy)|ψmax⟩ = 0.

Using the above relation we can compute

(J2
x + J2

y )|ψmax⟩ = (−iJxJy + iJyJx)|ψmax⟩ = ℏJz|ψmax⟩ = mmaxℏ2|ψmax⟩,

and
J2|ψmax⟩ = (m2

max +mmax)ℏ2|ψmax⟩.
For the smallest eigenvalue mminℏ and eigenstate |ψmin⟩ we have

J−|ψmin⟩ = 0, J2|ψmin⟩ = (m2
min −mmin)ℏ2|ψmin⟩.

We are working within the eigensubspace of J2, thus

m2
max +mmax = m2

min −mmin,

which leads to
mmin = −mmax.

Conventionally, we denote by j = mmax = −mmin the largest magnitude of
angular momentum. Then the eigenvalue of J2 is j(j + 1)ℏ2 (not j2ℏ2). 2j =
mmax −mmin has to be an integer, so we conclude the possible values of j are
the half integers 0, 12 , 1,

3
2 , . . .

Since we want a minimal space that the angular momentum operators act
on, let’s pick one eigenstate of Jz with eigenvalue jℏ, and apply J− to generate
other eigenstates. Let |j, j⟩ be a normalized state with J2|j, j⟩ = j(j+1)ℏ2|j, j⟩,
Jz|j, j⟩ = jℏ|j, j⟩. Define |j,m⟩ = CmJ

l−m
− |j, j⟩ where Cm is a normalization

factor. We determine the normalization inductively

⟨j,m|J†
−J−|j,m⟩ = ⟨j,m|J+J−|j,m⟩

= ⟨j,m|(J2
x + J2

y + ℏJz)|j,m⟩
= (j(j + 1)−m2 +m)ℏ2 = (j +m)(j −m+ 1)ℏ2.

Therefore, we should define inductively

|j,m− 1⟩ := 1√
(j +m)(j −m+ 1)ℏ

J−|j,m⟩.

We also see that ⟨j,−j|J†
−J−|j,−j⟩ = 0 which is consistent. Now we express

J+ in terms of these eigenstates |j,m⟩

J+|j,m⟩ = J+
1√

(j +m+ 1)(j −m)ℏ
J−|j,m+ 1⟩

=
1√

(j +m+ 1)(j −m)ℏ
(J2
x + J2

y + ℏJz)|j,m+ 1⟩

=
√
(j −m)(j +m+ 1)ℏ|j,m+ 1⟩.
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Now we have established a Hilbert space Vj spanned by |j,m⟩, where j is an
half integer and m = −j,−j+1, . . . , j−1, j. The angular momentum operators
act on this space by

Jz|j,m⟩ = mℏ|j,m⟩,

J±|j,m⟩ =
√
(j ∓m)(j ±m+ 1)ℏ|j,m± 1⟩,

Jx =
1

2
(J+ + J−), Jy =

i

2
(J− − J+).

Problem 4.2.3. Use the explicit operator actions above to verify that they
indeed satisfy the angular momentum commutation relation.

This space is indeed minimal: assume that M is a subspace of Vj invariant
under actions of Ji. Then by JzM = M there must an eigenstate of Jz in M .
Then applying J+ and J− to this eigenstate generates all the eigenstates of Jz,
therefore, M = Vj . In mathematical term, Vj is an irreducible representation
of the Lie algebra su(2) (angular momentum operators).

The above is the quantum description of angular momentum. Unlike in
classical mechanics where angular momentum is just a three-component vector,
in quantum mechanics, angular momentum is described by a Hilbert space Vj
labeled by an half integer j, together with the rules how Ji act on this space Vj .
This representation Vj is the quantum version of conserved quantity of angular
momentum. It is no longer simply some numbers; it is numbers and states (a
vector space) with additional structures.

Now let’s go through some examples:

Spin 0 Only one basis state |0, 0⟩ with J2|0, 0⟩ = Jz|0, 0⟩ = 0.

Spin 1
2 Two basis states | 12 ,±

1
2 ⟩. Angular momentum operators are propor-

tional to the Pauli operators Ji =
1
2ℏσi.

Orbital angular momentum In polar coordinates,

L̂2 = L̂2
x + L̂2

y + L̂2
z

= ℏ2
(
− 1

sin θ

∂

∂θ
− 1

sin2 θ

∂2

∂ϕ2

)
,

L̂z = −iℏ
∂

∂ϕ
.

And the eigen functions Y ml (θ, ϕ) of

L̂2Y ml = l(l + 1)ℏ2Y ml , L̂zY
m
l = mℏY ml ,

turns out to be the spherical harmonic functions, but only for integer l. Half
integer angular momenta are truly quantum. The spherical harmonic functions
form a convenient basis if the system has spherical symmetry (i.e. only depends
on r, no dependence on direction θ, ϕ).
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4.3 Group and representation

Now let’s discuss symmetry and conserved quantity in a more general setting.
Similar to the translation and rotation, we may apply any operation to our
system, and if the system remains invariant after the operation, we may say
that the system has some symmetry.

We first discuss the abstract properties of these operations, without referring
to any specific system. Denote the possible operations by g, h, . . .

1. Two successive operations g followed by h, is still an operation, which is
denoted by h ◦ g, or more compactly just hg.

2. “No operation” constitutes a special operation, denoted by 1. Clearly

1 ◦ g = g ◦ 1 = g,

for any operation g.

3. Three successive operations g followed by h followed by l, should be the
same as applying the operations two by two, namely

l ◦ (h ◦ g) = (l ◦ h) ◦ g.

4. As the system remains invariant, for any operation g, there should an
operation g−1 which reverse the system back to its original state, namely

g−1 ◦ g = 1.

And also (you can easily prove it or simply use it as an axiom)

g ◦ g−1 = 1.

Collect all these operations g, h, . . . to form a set, we arrives at the definition
of a group: a set G equipped with an associative binary operation (called
multiplication) ◦ : G×G→ G that has identity element 1 and inverse.

The abstract mathematical theory of group is already rich itself, but here we
care more about its application in quantum mechanics. In particular, instead of
the abstract operations or group elements, we want to represent them in terms
of concrete operators. This idea leads to the notion of group representation.

Denote by GL(V ) the set of invertible operators on a vector space V → V .
Define the multiplication to be just the operator composition, and it is easy to
verify that GL(V ) is a group.

A group homomorphism is a map f : G → H between groups G and H
that preserves multiplication f(hg) = f(h)f(g). The notion is useful in the
sense that if we know the properties of G, they can be carried over via f to
the group H. And here we want to take H = GL(V ) to be a very concrete
group: a representation of group G is a pair (V, ρ) where V is a vector space
and ρ : G→ GL(V ) is a group homomorphism. In particular, if a basis |i⟩ of V
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is chosen, the image ρ(g) of group element g under ρ can be represented more
concretely by a matrix ⟨i|ρ(g)|j⟩. Thus it is also often seen in the literature that
a representation means a collection of matrices Ug labeled by group elements,
such that UhUg = Uhg. This style of language, though concrete, has some weak
points: 1) the change of basis has to be accounted by saying two representations
to be equivalent if they differ by a similarity transformation U ′

g = PUgP
−1;

2) hiding the underlying Hilbert space V sometimes leads to overlook at the
physical picture.

The group representation (V, ρ) is exactly the mathematical description for
conserved quantity, corresponding to the mathematical description, group, for
symmetry. To see this, we may look at a 1-dimensional representation. In this
case, the basis state |b⟩ of V is just an eigenstate of all group actions ρ(g),
since for any g, ρ(g)|b⟩ has to be |b⟩ times some non-zero number bg, which
is then related to some conserved observable. As an example, consider the
translation symmetry. As an abstract group, we may say the translation is just
the real numbers x with group multiplication given by addition x1 + x2. A
representation on the Hilbert space spanned by the 1-dimensional position basis
is then ρ(x) = e−

i
ℏ p̂x. We see that each momentum state spans a 1-dimensional

representation of the translation symmetry

ρ(x)|p⟩ = e−
i
ℏpx|p⟩.

To understand the nature of conservation better, the notion of irreducible
representation introduced in the last section plays an important role. We are
going to show that if the system has symmetry, it is impossible for an irreducible
representation to evolve into a different irreducible representation. Intuitively,
an irreducible representation is a “smallest” one. Given a representation (V, ρ),
suppose that we can find a subspace W ⊂ V such that ρ(g)W ⊂ W , then
we obtain a sub-representation (W,ρ|W ) where ρ|W (g) is just the restriction
ρ(g)|W of ρ(g) on the subspace W . Clearly W = 0 or W = V is always a
sub-representation. A representation (V, ρ) is called irreducible if, besides 0
and V itself, there is no other subspace W satisfying ρ(g)W ⊂ W for all g.
Another useful notion is the intertwiner : an linear map f : W → V between
two representations (W,β) and (V, ρ) is called an intertwiner if it commutes
with group actions

fβ(g) = ρ(g)f, ∀g.

We have Schur’s lemma: an intertwiner between two irreducible representations
is either zero or an invertible map. This lemma follows directly from the fact
that ker f and fW are sub-representations of W and V respectively. As W,V
are assumed irreducible, we can only have ker f = W, fW = 0 (zero map) or
ker f = 0, fW = V (invertible map).

The intertwiner arises naturally in physics. A system with Hilbert space V
and Hamiltonian H has symmetry G means:

1. There is a group representation ρ : G → GL(V ) that realize the group
actions as operators ρ(g) on the physical Hilbert space V ;
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2. The Hamiltonian commutes with all group actions

[H, ρ(g)] = 0, ∀g ∈ G.

In other words, H, as well as the time evolution e−
i
ℏHt, are intertwiners.

The total Hilbert space V is in general reducible; however, we can always de-
compose V to subspacesW ⊂ V that are irreducible. Now, according to Schur’s
lemma and the continuity of evolution, a state |ψ⟩ ∈W in an irreducible repre-
sentation, after time evolution, has to remain in the same irreducible represen-
tation, e−

i
ℏHt|ψ⟩ ∈W . This phenomenon is also known as the (super-)selection

rule. We see the irreducible representation, as a whole, corresponds to the
conserved quantity of the symmetry.

Next we examine several examples of important symmetries beyond trans-
lation and rotation.

Parity and mirror symmetry The parity symmetry is given by

P |r⟩ = |−r⟩.

It reverse all the position coordinates. The mirror symmetry, on the other hand,
only reflects one direction, for example the y-z plane as the mirror plane,

Mx|x, y, z⟩ = |−x, y, z⟩.

Clearly P 2 = 1 = M2
x . The parity and mirror symmetries both have Z2 as

the abstract group, but realized differently in the physical Hilbert space (differ-
ent representations), they are different symmetries. Anyways, in 1-dimensional
space they are the same. We can derive the parity action on momentum states,
as well as on operators

P |p⟩ =
∫

dx
1√
2πℏ

e
i
ℏpx|−x⟩ =

∫
dx

1√
2πℏ

e−
i
ℏpx|x⟩ = |−p⟩,

P x̂P = −x̂, P p̂P = −p̂.

So, the orbital angular momentum L̂ = r̂ × p̂ under parity is

PL̂iP = L̂i.

We expect the total angular momentum, as well as the spin, to satisfy the same
relation

PJiP = Ji, PSiP = Si.

The above is used as the fundamental assumption to determine how parity
should act on the internal degrees of freedom of particles, usually the spin
degrees of freedom.

The application of parity symmetry, follows from the general discussion, is
that we can divide the states into two sectors, even and odd, according to their
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eigenvalues under parity action P |ψ⟩ = ±|ψ⟩. Even and odd states will never
touch the other under parity-symmetric evolutions.

Discrete/Lattice translation symmetry
In many-body physics, a typical problem is that atoms reside in a lattice and

provide a periodic background potential in which the electron moves. When the
potential V (x) is periodic V (x) = V (x+ a), the discrete translation operator

Ta|x⟩ = |x+ a⟩, Ta = e−
i
ℏ p̂a,

generates a discrete translation symmetry {Tna }. The abstract group here is
the same as the integers. The irreducible representations are still given by
momentum states. But note that |p⟩ and |p + 2πℏ/a⟩ give rise to the same
eigenvalue of the discrete translation operator Ta; therefore, effectively, discrete
position truncate momentum down to a finite range with a periodic boundary
condition.

We may further assume that our system is finite in space and impose the
periodic boundary condition |x + L⟩ = |x⟩ (or think that the system is put on
a ring with perimeter L), and the discrete lattice has N sites L = Na. Then
we have TNa = 1; the group becomes ZN . Moreover, the momentum also gets
quantized, since

TNa = e−
i
ℏ p̂aN = e−

i
ℏ p̂L = 1,

thus
pL

ℏ
= 2πk, k ∈ Z.

The momentum eigenvalues can only be multiples of 2πℏ
L .

Time-reversal symmetry The so-called time-reversal symmetry is beyond
our previous discussion, since linear operators do not suffice for representing
time-reversal symmetry. We need some additional treatment. The name is a bit
misleading: in fact we don’t really want to reversal the time; instead, we want
to study what happens if we reverse the direction of motion. That is, we want
an operator T to act as

T |x⟩ = |x⟩, T |p⟩ = |−p⟩,

reversing momentum while keeping position unchanged. However, unlike in
classical mechanics, |x⟩ and |p⟩ are not independent in quantum mechanics. If
T is an linear operator, the above formulas are impossible. We have to generalize
the notion of operators: An antilinear operator A : V → W between Hilbert
spaces V,W is a map satisfying

A(c1|α⟩+ c2|β⟩) = c∗1A|α⟩+ c∗2A|β⟩.
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If T is antilinear and T |x⟩ = |x⟩, we can check

T |p⟩ =
∫

dx
1√
2πℏ

T e
i
ℏpx|x⟩

=

∫
dx

1√
2πℏ

e−
i
ℏpxT |x⟩

=

∫
dx

1√
2πℏ

e−
i
ℏpx|x⟩

= |−p⟩.

So an antilinear operator gives the desired property of only reversing the direc-
tion of motion.

An antilinear operator is not easy to deal with. Note that if A and B are
both antilinear, then AB is linear. So a common trick is to choose a fixed
antilinear operator, usually called complex conjugation operator, and usually
denoted by K. But again the name is a bit misleading (as is very common in
the field of time-reversal symmetry). It makes no sense to say whether a state
vector is real, complex, or imaginary. What this K operator really does is that
it acts on a chosen orthogonal basis |b⟩ trivially

K|b⟩ = |b⟩,

and then extends to the whole space by antilinearity. So strictly speaking, such
K depends on basis choice, however, unfortunately the basis choice is almost
never made explicit in the literature. Anyways, it can be checked that K2 = 1.
For an arbitrary antilinear operator A, AK is linear, A = (AK)K. Therefore,
one can express any antilinear operator as

A = LK,

where L is linear and K is a complex conjugate operator (for a chosen basis, as
we explained). In particular if L in the above is unitary, A is called anti-unitary,
or equivalently, antilinear operator A is called anti-unitary if ⟨Aα|Aβ⟩ = ⟨α|β⟩∗.

To conclude, time-reversal symmetry needs to be represented by an anti-
unitary operator T . Acting on position and momentum operators,

T x̂T−1 = x̂, T p̂T−1 = −p̂.

Thus, for the angular momentum we have

TJiT
−1 = −Ji.

Problem 4.3.1. Determine the time-reversal operator T acting on a spin 1/2
particle. Let |0⟩, |1⟩ be the eigen basis of σz and choose the complex conjugation
operators K to act trivially on |0⟩, |1⟩. Express T as T = UK where U is a
unitary operator. Use the assumptions

TσiT
−1 = −σi,
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namely
UKσiKU

† = −σi.

You should find a unique solution, up a phase factor. Calculate T 2. What is
the abstract group for time-reversal acting on spin 1/2?

Hint: First compute KσiK which is a linear operator. 1, σi, i = x, y, z form
a basis of operators, so you can always write U = a0 +

∑
i aiσi for complex

numbers ai.
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Chapter 5

Many-body Theory

In this chapter we discuss some basic ingredients of many-body theory.

5.1 Composite system and tensor product

Let’s start by considering how to construct a many-body system. Clearly as
the name indicates, a many-body system includes many one-body subsystems.
It should be possible to construct firstly a two-body system, by composing two
one-body systems; next we can view the two-body system as a larger one-body
system, and compose it with another one-body system, to obtain a three-body
system; so on and so forth we can have an as-many-as-possible-body system.

Thus, let’s investigate, based on the general quantum mechanics principles,
what it means by a composite system consisting of two subsystems, i.e., a two-
body system.

Recall that we need to identify a physical system by measurements, in other
words, identify the Hilbert space by the spectrum of possible observables. When
we say a system can be divided into two subsystems, from a measurement per-
spective, we in fact mean

1. Each subsystem can be measured independently. For simplicity, let’s say
we have two operators A and B. A measures the states of subsystem 1,
according to which we identify the Hilbert space V1 of subsystem 1 by the
eigenstates of A, A|a⟩ = a|a⟩; V1 is spanned by |a⟩. Similarly, B measures
the states of subsystem 2, and we identify V2 spanned by |b⟩, B|b⟩ = b|b⟩.

2. The states of the total system, composed by subsystems 1 and 2, should be
fully determined when we know the states for both subsystems. Namely,
the total Hilbert space V is spanned by |a, b⟩ where A|a, b⟩ = a|a, b⟩, and
B|a, b⟩ = b|a, b⟩. In particular, we see that |a, b⟩ are common eigenstates of
A and B. The operators acting on different subsystems are automatically
compatible.
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3. We also need to consider superpositions. V1, V2 and V are both Hilbert
spaces; if we have a general state, not an eigen basis, in V1 or V2, what
should be the corresponding state in the total space V ? It is natural to
require that V inherits the linearity of V1 and V2. From now on we drop
the assumption that |a⟩ and |b⟩ are eigenstates of some operators, and use
them for generic states in subsystems 1 and 2 respectively. For subsystem
states

c1|a1⟩+ c2|a2⟩ ∈ V1, |b⟩ ∈ V2,

the total state is
c1|a1, b⟩+ c2|a2, b⟩.

Similarly, for subsystem states

|a⟩ ∈ V1, c1|b1⟩+ c2|b2⟩ ∈ V2,

the total state is
c1|a, b1⟩+ c2|a, b2⟩.

You can see that the naive notation |a, b⟩ is not convenient when dealing with
superpositions (linear combinations), and thus also change of basis if we want
to measure subsystems using some other observables. It is instructive to seek
for a basis independent description of the total Hilbert space. We begin by
putting the states of subsystems together, i.e., that Cartesian product V1×V2 =
{(|a⟩, |b⟩)||a⟩ ∈ V1, |b⟩ ∈ V2}. V1 × V2 is merely a set; next we make V1 × V2 a
vector space by taking all formal linear combinations

∑
ca,b(|a⟩, |b⟩), denoted

by F (V1 × V2), the free vector space over the set V1 × V2. Clearly F (V1 × V2)
is too large; any (|a⟩, |b⟩) is a basis vector. We then introduce an equivalence
relation ∼:

(c1|a1⟩+ c2|a2⟩, |b⟩) ∼ c1(|a1⟩, |b⟩) + c2(|a2⟩, |b⟩),
(|a⟩, c1|b1⟩+ c2|b2⟩) ∼ c1(|a⟩, |b1⟩) + c2(|a⟩, |b2⟩).

And define the total Hilbert space to be the quotient set

V1 ⊗ V2 := F (V1 × V2)/ ∼,

called the tensor product of V1 and V2. Also, we use the notation |a⟩ ⊗ |b⟩ for a
state vector in V1 ⊗ V2, representing the equivalence class containing (|a⟩, |b⟩).
Then we have equations

(c1|a1⟩+ c2|a2⟩)⊗ |b⟩ = c1|a1⟩ ⊗ |b⟩+ c2|a2⟩ ⊗ |b⟩,
|a⟩ ⊗ (c1|b1⟩+ c2|b2⟩) = c1|a⟩ ⊗ |b1⟩+ c2|a⟩ ⊗ |b2⟩.

We also have the tensor product of operators A⊗B, which is defined by acting
on the states component-wise, (A ⊗ B)(|a⟩ ⊗ |b⟩) = (A|a⟩) ⊗ (B|b⟩). It follows
directly that the composition of operators is also component-wise

(A⊗B)(U ⊗W ) = (AU ⊗BW ).
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An operator A acting on V1 becomes an operator A ⊗ 1 acting on the tensor
product V1 ⊗ V2. Similarly for an operator B acting on V2. It follows directly
from the definition that

(A⊗ 1)(1⊗B) = A⊗B = (1⊗B)(A⊗ 1).

So strictly speaking, it is A⊗ 1 that commutes with 1⊗B.

Problem 5.1.1. The construction of total Hilbert space (tensor product) using
a chosen basis is more convenient in practice, that is, fix the bases |a⟩ of V1 and
|b⟩ of V2, let V1 ⊗ V2 be a vector space with basis |a⟩ ⊗ |b⟩, and extend from
basis to generic state by linearity.

1. Prove that such construction is indeed basis independent, that is, even if
one chooses different bases of V1 and V2, the constructed V1 ⊗ V2 differs
by only a change of basis.

2. Denote the operators acting on V by Hom(V, V ). Prove that

Hom(V1 ⊗ V2, V1 ⊗ V2) = Hom(V1, V1)⊗Hom(V2, V2).

Hint: Pick a basis |a⟩ of V , then a basis of the operator space is |a⟩⟨a′|.

3. Write down the matrix elements of A⊗B in terms of matrix elements of
A and B.

Therefore, to compose two systems into one, we just take the tensor product.
Repeat the procedure we can compose any numbers of systems into one

(· · · ((V1 ⊗ V2)⊗ V3)⊗ · · · ⊗ Vn).

One thing to note is that the associativity of the tensor product

(V1 ⊗ V2)⊗ V3 ≃ V1 ⊗ (V2 ⊗ V3)

is by no means a simple equality, but requires an invertible linear map to identify

(|a⟩ ⊗ |b⟩)⊗ |c⟩ ↔ |a⟩ ⊗ (|b⟩ ⊗ |c⟩).

You can see the vectors on either side have quite different meanings in our con-
struction of tensor product. There is in fact no alternative construction which
can make the tricky difference vanish. Nevertheless, the above identification is
so natural that in practice it is always assumed implicitly and then the brack-
ets are dropped. However, noticing a trivial structure is the first step towards
finding non-trivial structures. Indeed it is possible to identify (V1 ⊗ V2) ⊗ V3
and V1⊗ (V2⊗V3) using some different linear maps other than the most natural
one, and such consideration leads you to the realm of tensor category theory.

It becomes a technical difficulty how to express the states and operators
when there are too many subsystems (a long tensor product sequence). People
invented various shorthand notations in the literature:
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1. The tensor product notation is preferred in mathematics literature. It is
clear but a bit long. An advantage is that you can use the tensor product
symbol to express some general formula (if there exists one), such as

⊗ni=1(|ai⟩+ ci|bi⟩) = (|a1⟩+ c1|b1⟩)⊗ · · · ⊗ (|an⟩+ cn|bn⟩).

Also when you do not want to use the quantum mechanical bracket nota-
tions, but want to use a single letter a to represent a vector, the tensor
product notation seems your best choice.

2. Drop the tensor product and simply put kets and bras side by side:

|a⟩|b⟩ := |a⟩ ⊗ |b⟩, ⟨a|⟨b| := ⟨a| ⊗ ⟨b|.

For operators, similarly

XIZZY := X ⊗ 1⊗ Z ⊗ Z ⊗ Y,

which is often seen in quantum information literatures. Note that you can
not omit identity operators in this notation.

3. Further drop the brackets in the middle:

|ab⟩ := |a⟩ ⊗ |b⟩, ⟨ab| := ⟨a| ⊗ ⟨b|.

Or use some other separators like |a, b⟩, especially when a, b are some
longer labels. This style of notations make the state vector short, but are
not convenient to deal with operators.

4. For operators, the indexed notation is more often used, especially for
many-body cases. Just put an index around the operator to specify on
which subsystem it is acting on.

A(1) = A⊗ 1⊗ 1⊗ · · · , B(2) := 1⊗B ⊗ 1⊗ · · · .

As an application, let’s discuss the addition of conserved quantities of sub-
systems. From the symmetry point of view, when two subsystems V1 and V2
have the same symmetry, which means that they are representations of the same
group G, ρ1 : G → GL(V1), ρ2 : G → GL(V2), the composed system V1 ⊗ V2
also has the same symmetry, with symmetry action given by

ρ : G→ G×G→ GL(V1 ⊗ V2)

g 7→ (g, g) 7→ ρ1(g)⊗ ρ2(g).

Namely, the symmetry acts on subsystems component-wise. (This is another
place that you can modify the most natural structure, as a result you can go
beyond group-like symmetries.)
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In particular, if we consider a Lie group e−iAr action on both subsystems,
whose corresponding conserved quantity is given by the Hermitian generator A,
the tensor product action on the composed system is

e−iAr ⊗ e−iAr = e−i(A⊗1)re−i(1⊗A)r.

Use the fact that A⊗ 1 and 1⊗A commutes in the tensor product total Hilbert
space, we find the Lie group action on the composed system to be

e−i(A⊗1+1⊗A)r.

In other words, the corresponding conserved quantity of the composed system
is, in the indexed notation

Atotal = A(1) +A(2) = A⊗ 1 + 1⊗A.

This is the rule for addition of momentum, angular momentum, etc.

Problem 5.1.2. Show that the addition of momentum is just the usual addition
of numbers.

Problem 5.1.3. Calculate the addition of angular momentum, for two spin
1/2 particles.

1. Pick the Sz = 1
2ℏσz basis of each particle and write down the tensor

product basis of the composed system.

2. The total angular momentum operator is

Ji = Si ⊗ 1 + 1⊗ Si.

To find the angular momentum of the composed system, first write down
the matrix of

J2 =
∑
i

J2
i .

Find its eigenvalues and eigenstates. How is the total Hilbert space de-
composed according to J2, i.e. the magnitude of angular momentum?

3. Next, within the eigen subspaces of J2, find the eigenvalues and eigenstates
of Jz.

4. You have obtained four orthogonal states with fixed values of J2 and Jz,
they form a new basis. Write down the matrix transforming from the
tensor product basis to this new basis. The basis change matrix elements
are just the Clebsch–Gordan (CG) coefficients, for the addition of two spin
1/2’s.
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5.2 An introductory many-body example

In this section we solve a simple many-body system, whose results motivate the
postulate of identical particles. Consider N particles with equal mass m, put
on a very large ring. Denote the position and momentum operator of the ith
particle by x̂i and p̂i, with the understanding i + N = i. The total Hilbert
space is the tensor product of the position space of all particles, spanned by
|x1⟩ ⊗ · · · ⊗ |xN ⟩. Think x̂i and p̂i as acting on the total Hilbert space (indexed
notation), we have commutation relations

[x̂i, p̂j ] = iℏδij , [x̂i, x̂j ] = [p̂i, p̂j ] = 0.

We also consider a simple quadratic interaction between the particles, a spring
connecting each pair of nearest particles. The Hamiltonian is thus

H =

N∑
i=1

p̂2i
2m

+
1

2
mω2

N∑
i=1

(x̂i+1 − x̂i)
2.

Using the ideas introduced in previous lectures, it is not hard to solve this sys-
tem. First, we would seek a new linear combination of operators to simplify the
Hamiltonian. Second, notice that the Hamiltonian has the discrete translation
symmetry, generated by

i→ i+ 1,

and forming the abstract group ZN . Thus, we try the operators that are invari-
ant under such translation symmetry

Xp =
1√
N

∑
i

e
2πi
N ipx̂i, Pp =

1√
N

∑
i

e−
2πi
N ipp̂i.

Here, i is the position index and p = 1, . . . , N (again think p + N = p) is the
(lattice) momentum index, and we are essentially doing Fourier transform on
these discrete indices. Using the equation (the transformation coefficients form
a unitary matrix)

N∑
i=1

e
2πi
N ip = Nδp0,

we can compute the new commutation relations

[Xp, Pq] = iℏδpq, [Xp, Xq] = [Pp, Pq] = 0,

which is essentially the same as the old ones. Note that Xp and Pp are not
Hermitian. Indeed

X†
p = X−p, P †

p = P−p.

Only when p = 0 or p = N/2 (for even N) they are Hermitian. We will come
to this point later.
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The inverse transformation is

x̂i =
1√
N

∑
p

e−
2πi
N ipXp, p̂i =

1√
N

∑
p

e
2πi
N ipPp.

Therefore, the Hamiltonian is

H =
1

2mN

∑
i

∑
p

e
2πi
N ipPp

∑
q

e
2πi
N iqPq

+
1

2N
mω2

∑
i

∑
p

(e−
2πi
N p − 1)e−

2πi
N ipXp

∑
q

(e−
2πi
N q − 1)e−

2πi
N iqXq

=
1

2m

∑
p

PpP−p +
1

2
mω2

∑
p

2(1− cos(
2πp

N
))XpX−p.

We see that the Hamiltonian is decomposed to the p,−p modes. For simplicity
we only consider odd N , so only the p = 0 mode is special.

Hp ̸=0 =
1

2m
(PpP−p + P−pPp) +mω2(1− cos(

2πp

N
))(XpX−p +X−pXp),

Hp=0 =
1

2m
P 2
0 ,

H =
∑

0<p<N/2

Hp +Hp=0.

For 0 < p < N/2 we may further define the Hermitian operators

Xp,+ =
1√
2
(Xp +X−p) =

√
2

N

∑
i

x̂i cos
2π

N
ip,

Xp,− =
−i√
2
(Xp −X−p) =

√
2

N

∑
i

x̂i sin
2π

N
ip,

Pp,+ =
1√
2
(Pp + P−p) =

√
2

N

∑
i

p̂i cos
2π

N
ip,

Pp,− =
i√
2
(Pp − P−p) =

√
2

N

∑
i

p̂i sin
2π

N
ip.

The only nonzero commutation relations are

[Xp,+, Pq,+] = iℏδpq, [Xp,−, Pq,−] = iℏδpq.

In other words, we can think Xp,± and Pp,± as position and momentum of a new
particle labeled by p,±, whose Hamiltonian is like a simple harmonic oscillator,

Hp ̸=0 =
1

2m
(P 2
p,+ + P 2

p,−) +mω2(1− cos(
2πp

N
))(X2

p,+ +X2
p,−),
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with deformed frequency ωp = ω
√
2(1− cos( 2πpN )). We can then apply the

harmonic oscillator solution to these modes. Finally, the many-body system is
solved

H =
1

2m
P 2
0 +

∑
0<p<N/2

ℏωp(a†p,+ap,+ + a†p,−ap,− + 1).

The first term 1
2mP

2
0 is just the center of mass kinetic energy, and the following

terms are harmonic oscillator modes labeled by the lattice momentum p.
In the above example, we start with a bunch of distinguishable particles,

with positions x̂i, but end up with a bunch of indistinguishable particles, whose
numbers are given by a†p,±ap,± and each carries an energy ℏωp and a lattice
momentum p. As long as we have means to exchange energy with this many-
body system (which is inevitable in practice), it is a lot easier to observe the
indistinguishable particles, i.e., count their numbers according to energy, than
to measure the positions of the distinguishable particles, especially when the
number N of degrees of freedom is very large, say of the order of the Avogadro’s
constant 6× 1023. If the Hamiltonian is more general and contains higher order
terms than the quadratic ones, the higher order terms give rise to interactions
between the harmonic oscillator modes from the quadratic terms.

For the time being, we find, and thus just simply postulate, that the fun-
damental particles in our world, such as electrons, photons, etc., are indistin-
guishable, or identical particles. The above example provides a possible reason,
but currently we do not have the experimental power to check whether there is
an underlying, more fundamental quantum system that hosts the fundamental
particles as excitations. Nonetheless, the formulation of identical particles must
be investigated; fundamental or not, they are necessary for describing a lot of
phenomena.

5.3 Identical particle

By identical particles, we mean the eigenstates of the number operator N . We
can only count the total number of such particles, but cannot distinguish one
from another. Each particle may carry a unit of energy (mass), exhibited by
a term NE in the Hamiltonian. Besides, each particle may also carries a unit
of some other conserved quantities, such as the momentum. These quantities
can be used to label the modes of such identical particle, and we also have the
number operator Np for each mode. They commute with each other and sum
to the total number

[Np, Nq] = 0, N =
∑
p

Np.

Therefore, it is a good, unambiguous way to specify a state of many identical
particles, by saying that there are np particles with momentum p, nq particles

60



with momentum q, etc. These states form the occupation basis

|np, nq, . . .⟩,

1 =
∑

np,nq,...

|np, nq, . . .⟩⟨np, nq, . . . |,

⟨n′p, n′q, . . . |np, nq, . . .⟩ = δnpn′
p
δnqn′

q
· · · .

Np|np, nq, . . .⟩ = np|np, nq, . . .⟩, Nq|np, nq, . . .⟩ = nq|np, nq, . . .⟩.
We expect the operators a†p and aq to create and annihilate particles in the p, q
modes

a†p|np, nq, . . .⟩ = C1|np + 1, nq, . . .⟩, aq|np, nq, . . .⟩ = C2|np, nq − 1, . . .⟩,

but in general there will be non-zero factors C1, C2, including both normaliza-
tion and phase factors, for us to fix. Note that the occupation basis are also the
eigenstates of a†pap (or apa

†
p), which means by properly adjusting the normal-

ization factor it is possible to use a†pap as the number operator. On the other
hand, we see that a generic occupation basis state may be expressed in terms
of creation operators together with the vacuum state |0⟩, i.e., the state with
no identical particles,

(a†p)
np(a†q)

nq · · · |0⟩ = C|np, nq, . . .⟩.

Different choices of the normalization and phase factor C correspond to different
statistics of the identical particle. Currently we know that there can be many
non-trivial types of statistics, but here let’s discuss the two simplest ones, Bose
statistics and Fermi statistics. The identical particles satisfying Bose and Fermi
statistics are called boson and fermion, respectively.

The idea behind the Bose and Fermi statistics is that one may exchange
two identical particles, and the resulting state should remain the same, up to
an overall factor, since identical particles are indistinguishable. If one further
assumes that the overall factor, denoted by θ, does not depend on the detailed
exchange path, one concludes that θ2 = 1, since two exchanges are just the
identity. The overall factor may be encoded by the commutation relation of
creation operators

a†pa
†
q = θa†qa

†
p, θ = ±1.

Let’s study the θ = 1 case, Bose statistics first. In this case the ladder
operators for different p, q commutes, so we can just think that different p, q
represent different harmonic oscillator modes, and fix the ladder operators as in
the harmonic oscillator,

a†p|np, nq, . . .⟩ =
√
np + 1|np+1, nq, . . .⟩, aq|np, nq, . . .⟩ =

√
nq|np, nq− 1, . . .⟩,

and Np = a†pap. Alternatively, similar as we have derived in the harmonic oscil-
lator section, the explicit expressions above are equivalent to the commutation
relations

[ap, a
†
q] = δpq, [ap, aq] = 0.
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The θ = −1, Fermi statistics case, is more involved. Let’s study a single
mode first, dropping the mode label p. Also to distinguish from the Bose case,
we use c†, c instead of a†, a. The anti-commutation

c†c† = −c†c†

implies c†c† = 0, thus
c†c†|0⟩ ∼ c†|1⟩ = 0.

In other words, the occupation number for fermions can only be 0 or 1. There
are only two states, we can simply fix

c|0⟩ = c†|1⟩ = 0, c|1⟩ = |0⟩, c†|0⟩ = |1⟩.

Then it is not hard to check c†c = N is the number operator. Similar to the
boson case, these explicit expressions are equivalent to the anti-commutation
relations

{cp, c†q} = δpq, {cp, cq} = 0.

The anti-commutator is defined as {A,B} = AB +BA.

Problem 5.3.1. Use {c, c†} = 1, {c, c} = 0 to derive the commutation relations

[c†c, c†] = c†, [c†c, c] = −c,

which means that c† increases and c decreases the eigenvalue of c†c by 1.

Since cp and cq for different modes anti-commutes, the order of the lad-
der operators matters and could contribute a non-trivial sign. We have to fix
an order when express the occupation basis using the creation operators, for
example

|np, nq⟩ = (c†p)
np(c†q)

nq |0⟩.

In the above convention, the sign of the creation operator c†q for the second
mode depends on whether the first mode is occupied,

c†q|0, 0⟩ = |0, 1⟩, c†q|1, 0⟩ = −|1, 1⟩.

5.4 Field operator

For identical particles, it is no longer sound to speak about the position of
a specific particle. In this section we inspect the proper way to describe the
positions of many identical particles, using field operators, and also discuss the
many-body Hamiltonian.

When there is only one identical particle, we can identify its state with a
single particle state. We consider Bose statistics first. For momentum p, it
means

a†p|0⟩ = |p⟩.
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However, a†pa
†
q|0⟩ is not, for example, the tensor product |p⟩ ⊗ |q⟩. Think about

why.
Let ψ†(x) be the operator that creates a particle at position x, namely,

ψ†(x)|0⟩ = |x⟩.

ψ†(x) is the so-called field operator. It is a bunch of operators indexed by
the position x. We can now associate the single particle wavefunction to the
operators

⟨0|ψ(x)a†p|0⟩ = ⟨x|p⟩.

For simplicity, let’s assume that the momentum exhausts the possible degrees
of freedom of our identical particles, which means that we should be able to
express ψ(x) as a linear combination of the momentum annihilation operator,

ψ(x) =
∑
p

φpxap.

We then find

⟨x|p⟩ = ⟨0|ψ(x)a†p|0⟩ = ⟨0|
∑
q

φqxaqa
†
p|0⟩

= ⟨0|
∑
q

φqx(δpq + a†paq)|0⟩ = φpx.

Here and later we may leave the form of ⟨x|p⟩ implicit for application in similar
scenarios:

1. x, p are both continuous.

2. x is finite but continuous while p is discrete (box normalization).

3. p is finite but continuous while x is discrete (discrete translation symme-
try).

4. x, p are both discrete, as the example in the previous section.

The matrix elements ⟨x|p⟩ = φpx are all of similar exponential forms, only with
different normalizations. As the box normalization is new to us, we discuss it
briefly and will use the notation for continuous x but discrete p.

As the name indicates, box normalization means that we restrict the position
within a finite box, say of length L. If you like, you may later let L → ∞ to
recover the x, p both continuous case. It is more convenient to impose the
periodic boundary condition |x⟩ = |x + L⟩ (so that for 1-dimensional system
it is a ring, for 2-dimensional system it is a torus, for 3-dimensional system
it is a 3-torus, which is hard to imagine and that is why people just say box
normalization). The momentum becomes quantized due to the constraint

e
i
ℏpx ∼ ⟨x|p⟩ = ⟨x+ L|p⟩ ∼ e

i
ℏp(x+L),
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thus

e
i
ℏpL = 1, p =

2πℏ
L
k, k ∈ Z.

And the normalization is

δpq = ⟨q|p⟩ =
∫ L

0

dx ⟨q|x⟩⟨x|p⟩, (5.1)

which leads to

⟨x|p⟩ = 1√
L
e

i
ℏpx.

Due to the Fourier expansion theorem for periodic functions f(x) = f(x+ L),

f(x) =
∑
k

ck
1√
L
e

2πi
L kx, ck =

∫ L

0

dy f(y)
1√
L
e−

2πi
L ky,

we have

δ(x− y) =
∑
k

1

L
e

2πi
L k(x−y) =

∑
p

⟨x|p⟩⟨p|y⟩. (5.2)

This formula also helps us to get the L → ∞ limit. When L → ∞, p = 2πℏ
L k

becomes continuous and we should identify dp = 2πℏ
L , therefore∫

dp ∼
∑
k

2πℏ
L
,

lim
L→∞

∑
k

1

L
=

∫
dp

2πℏ
.

We recover the normalization of delta function for continuous p

δ(x− y) =
1

2πℏ

∫
dp e

i
ℏp(x−y).

Now for the field operator

ψ(x) =
∑
p

⟨x|p⟩ap, ψ†(x) =
∑
p

a†p⟨p|x⟩,

using the the unitarity (5.1)(5.2) of ⟨x|p⟩, we have the commutation relations

[ψ(x), ψ†(y)] = δ(x− y), [ψ(x), ψ(y)] = 0,

and inverse transform

ap =

∫ L

0

dx ⟨p|x⟩ψ(x), a†p =

∫ L

0

dxψ†(x)⟨x|p⟩.

Also, the total number of particles

N =
∑
p

Np =
∑
p

a†pap =

∫ L

0

dxψ†(x)ψ(x).
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In the continuous case, ρ(x) := ψ†(x)ψ(x) is the number density operator
(ρ(x)dx is the number operator in the small interval [x, x+ dx] ), and

[ψ†(x)ψ(x), ψ†(y)] = δ(x− y)ψ†(y),

which means that ψ†(y) increases the density by δ(x− y), and

[N =

∫
dxψ†(x)ψ(x), ψ†(y)] = ψ†(y),

the total number is increased by 1. Therefore, ψ†(y) indeed creates a particle
at y, whose density is δ(x− y). Now,

|x1, . . . , xn⟩ := ψ†(x1) · · ·ψ†(xn)|0⟩

is a state with n identical particles at positions x1, . . . , xn. We will elaborate
on this point later.

Having clarified the unitary transformation between momentum and position
field operators, we are ready to write down some commonly seen Hamiltonian
terms. Depending on the number of particles involved in the interactions, we
may write

H = H0 +H1 +H2 + . . .

H0 is the free part, the kinetic energy, H1 is the single particle potential energy
and H2 is the two-body interaction, etc. The kinetic energy H0 is diagonal in
the momentum occupation basis

H0 =
∑
p

p2

2m
Np =

∑
p

p2

2m
a†pap.

In the position basis

H0 =

∫ L

0

dx

∫ L

0

dy
∑
p

1

L

p2

2m
e

i
ℏp(x−y)ψ†(x)ψ(y).

Note that
∂2

∂y2
e

i
ℏp(x−y) = −p

2

ℏ2
e

i
ℏp(x−y).

We may sum over p first and then take the above partial derivative

H0 =

∫ L

0

dx

∫ L

0

dy
∑
p

1

L

p2

2m
e

i
ℏp(x−y)ψ†(x)ψ(y)

=

∫ L

0

dx

∫ L

0

dy
∑
p

− 1

L

ℏ2

2m

(
∂2

∂y2
e

i
ℏp(x−y)

)
ψ†(x)ψ(y)

=

∫ L

0

dxψ†(x)

∫ L

0

dy

(
− ℏ2

2m

∂2

∂y2

∑
p

1

L
e

i
ℏp(x−y)

)
ψ(y)

=

∫ L

0

dxψ†(x)

∫ L

0

dy

(
− ℏ2

2m

∂2

∂y2
δ(x− y)

)
ψ(y).
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To evaluate the integral with respect to y, we are going to use integration
by parts repeatedly. Note that we have a integral with respect to x in front,
and the boundary terms x = 0 and x = L occupy only a zero length (zero
measure) comparing to the whole interval [0, L], so we can think 0 < x < L
while integration by parts, with

δ(x− y)
∣∣∣
y=0,y=L

=
∂

∂y
δ(x− y)

∣∣∣
y=0,y=L

=
∂2

∂y2
δ(x− y)

∣∣∣
y=0,y=L

= 0.

Therefore, ∫ L

0

dy

(
∂2

∂y2
δ(x− y)

)
ψ(y)

= ψ(y)
∂

∂y
δ(x− y)

∣∣∣y=L
y=0

−
∫ L

0

dy

(
∂

∂y
δ(x− y)

)
∂

∂y
ψ(y)

= −δ(x− y)
∂

∂y
ψ(y)

∣∣∣y=L
y=0

+

∫ L

0

dy δ(x− y)
∂2

∂y2
ψ(y)

=
∂2

∂x2
ψ(x).

Finally we have

H0 =

∫
dxψ†(x)

(
− ℏ2

2m

∂2

∂x2

)
ψ(x).

The above derivation involving integral transform also works for single particle

states |x⟩, |p⟩, that is why we got the same form − ℏ2

2m
∂2

∂x2 for kinetic energy.
The single particle potential energyH1 is diagonal in the position occupation

basis

H1 =

∫
dxV1(x)ρ(x) =

∫
dxψ†(x)V1(x)ψ(x).

In the momentum basis,

H1 =
∑
p,q

∫
dx ⟨p|x⟩a†pV1(x)⟨x|q⟩aq =

∑
p,q

Vpqa
†
paq,

where the Fourier transform of the potential

Vpq =

∫
dx ⟨p|x⟩V1(x)⟨x|q⟩,

needs to be calculated or given on a case by case basis.
We consider the two-body interaction H2 given by some two-body potential

V2(x, y) = V2(y, x) (for example, the Coulomb potential) which is diagonal in
the two-body position states |x, y⟩. Classically, the two-body energy is given by
the integration of the two-body potential V2(x, y) times the densities ρ(x) and
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ρ(y) at x and y, divided by 2 as we counted twice for each pair of positions.
Naive quantization gives

1

2

∫
dx

∫
dy V2(x, y)ρ(x)ρ(y)

=
1

2

∫
dx

∫
dy V2(x, y)ψ

†(x)ψ(x)ψ†(y)ψ(y).

You can easily verify [ρ(x), ρ(y)] = 0 so their order does not matter. However,
the correct quantization is to use the normal order of field operators, that is
putting all creation operators to the left and all annihilation operators to the
right. In the normal order convention

H2 =
1

2

∫
dx

∫
dy ψ†(x)ψ†(y)V2(x, y)ψ(y)ψ(x)

=
1

2

∫
dx

∫
dy ψ†(x)ψ(x)V2(x, y)ψ

†(y)ψ(y)− 1

2

∫
dxψ†(x)V2(x, x)ψ(x).

The difference is a nontrivial modification 1
2V2(x, x) to the single particle poten-

tial. To see why the normal order is the correct one, remember the fundamental
philosophy of measurement. The two-body potential V2(x, y) should be mea-
sured by the energy of a two-body state

H2|x, y⟩ = V2(x, y)|x, y⟩,

where |x, y⟩ = ψ†(x)ψ†(y)|0⟩. Now insert H2 and perform the calculation

H2|x, y⟩ =
1

2

∫∫
dudv ψ†(u)ψ†(v)V2(u, v)ψ(v)ψ(u)ψ

†(x)ψ†(y)|0⟩.

Let’s focus on the rightmost part

ψ(v)ψ(u)ψ†(x)ψ†(y)|0⟩ = ψ(v)
(
δ(u− x) + ψ†(x)ψ(u)

)
ψ†(y)|0⟩

= δ(u− x)δ(v − y)|0⟩+ δ(v − x)δ(u− y)|0⟩,

where we have used ψ(u)|0⟩ = ψ(v)|0⟩ = 0. Thus,

H2|x, y⟩

=
1

2

∫∫
dudv ψ†(u)ψ†(v)V2(u, v) (δ(u− x)δ(v − y) + δ(v − x)δ(u− y)) |0⟩

=
1

2

(
ψ†(x)ψ†(y)V2(x, y)|0⟩+ ψ†(y)ψ†(x)V2(y, x)|0⟩

)
= V2(x, y)|x, y⟩,

as desired. Also, it is easy to compute

1

2

∫
duψ†(u)V2(u, u)ψ(u)|x, y⟩ =

1

2
(V2(x, x) + V2(y, y))|x, y⟩,

67



which means that the naive quantization overcounts the self-interaction

1

2
V2(x, x) +

1

2
V2(y, y).

It is then straightforward to transform into the momentum basis

H2 =
1

2

∑
p,q,r,s

Vpqrsa
†
pa

†
qaras,

where

Vpqrs =

∫∫
dxdy ⟨p|x⟩⟨q|y⟩V2(x, y)⟨y|r⟩⟨x|s⟩.

The story is completely similar for fermions. For fermion creation and an-
nihilation operators c†p, cp, with anti-commutation relations

{cp, c†q} = δpq, {cp, cq} = 0,

We still define fermionic field operators

ψ(x) =
∑
p

⟨x|p⟩cp.

They have anti-commutation relations

{ψ(x), ψ†(y)} = δ(x− y), {ψ(x), ψ(y)} = 0.

The number operators and Hamiltonian terms we discussed, are of the same
form as bosons. The only thing to be careful with is the normal order for
interactions between two or more. For fermions, the order of positions needs to
be reversed between creation and annihilation operators. Though it makes no
difference for bosons, it is recommended to always follow such rule.

Problem 5.4.1. For fermionic field operators

ψ(x) =
∑
p

⟨x|p⟩cp,

and two-body interaction

H2 =
1

2

∫
dx

∫
dy ψ†(x)ψ†(y)V2(x, y)ψ(y)ψ(x),

verify again
H2ψ

†(x)ψ†(y)|0⟩ = V2(x, y)ψ
†(x)ψ†(y)|0⟩.

Also compute the difference between the normal order and the naive quantiza-
tion

1

2

∫
dx

∫
dy V2(x, y)ρ(x)ρ(y).

Be careful about the signs and learn how they cancel up to give the same form
of result as the bosonic case.
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5.5 Many-body wavefunction

We finish the many-body theory part by discussing the many-body wavefunc-
tion. Naively, for an n-body state |Ψ⟩, the wavefunction is just

⟨x1, . . . , xn|Ψ⟩.

It has some nontrivial properties with respect to permutation and normalization.
Traditionally, these properties are attributed to the wavefunction; however, a
probably better view is to attribute them to the position basis

|x1, . . . , xn⟩ := ψ†(x1) · · ·ψ†(xn)|0⟩,

and in turn to the algebraic relations of the field operator ψ(x).
The permutation property is relatively easy. When two positions are ex-

changed, we get a minus sign for fermions and nothing for bosons. As an
example, suppose we exchange x1 and xn for fermions

ψ†(x1) · · ·ψ†(xn) = (−1)n−1ψ†(x2) · · ·ψ†(xn)ψ
†(x1)

= (−1)n−1(−1)n−2ψ†(xn)ψ
†(x2) · · ·ψ†(xn−1)ψ

†(x1)

= −ψ†(xn)ψ
†(x2) · · ·ψ†(xn−1)ψ

†(x1).

The normalization is slightly nontrivial. For simplicity, let’s consider the
discrete momentum modes first. The occupation states

|np1 , np2 , . . .⟩,

form an orthonormal basis, provided that we choose a fixed order of the mo-
mentum indices p1, p2, . . . ,

1 =
∑

np1
,np2

,...

|np1 , np2 , . . .⟩⟨np1 , np2 , . . . |.

The total number of particles is not fixed; the above way of decomposing the
identity is like the grand canonical ensemble. But we may as well do it in the
canonical ensemble way. The total number operator N surely is a Hermitian
observable. States with different total numbers of particles form different eigen-
subspaces of N and have mutually no overlap. Denote by Pn the projection to
the n-particle state

Pn =
∑

np1+np2+···=n
|np1 , np2 , . . .⟩⟨np1 , np2 , . . . |,

and

1 =

∞∑
n=0

Pn.

As you can see, the occupation basis is no longer convenient when the total
number of particles is fixed. But it is easy to see that you need a fixed number
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of creation operators acting on the vacuum state to obtain a state with fixed
total number of particles. So instead, it is better to just specify the momenta
p1, . . . , pn of n particles, and define the n-body state

|p1, . . . , pn⟩ := a†p1 · · · a
†
pn |0⟩.

However, the normalization becomes nontrivial. When all p1, . . . , pn are differ-
ent, the above state is normalized. But when some of p1, . . . , pn are the same,
for example p1 = p2 = p3 < p4 < · · · < pn, we know

|np1 = 3, np4 = 1, . . . , npn = 1, other np = 0⟩

=
(a†p1)

3

√
3!

a†p4 · · · a
†
pn |0⟩

=
1√
3!
|p1 = p2 = p3, p4, . . . , pn⟩,

is normalized. Therefore,

Pn =

( ∑
p1<···<pn

+
1

2!

∑
p1=p2<p3<···<pn

+ · · ·

)
|p1, . . . , pn⟩⟨p1, . . . , pn|.

Surely such subtlety vanishes for fermions. It also gets simplified for continuous
modes, since except the first summation, all remaining summations are over zero
area, volume or hyper-volume (zero measure) and thus negligible. Therefore,
it is preferred to consider n-particle states in terms of continuous modes, for
example the continuous position in box normalization:

Pn =

∫ L

0

dx1

∫ L

x1

dx2 · · ·
∫ L

xn−1

dxn |x1, . . . , xn⟩⟨x1, . . . , xn|.

It looks better to use uniform interval for all the positions and then correct for
the overcounting. It is clear that any permutation of x1, . . . , xn gives the same
state as |x1, . . . , xn⟩, at most up to a sign for fermions, and exactly the same
projection |x1, . . . , xn⟩⟨x1, . . . , xn|. Thus we are overcounting n! times,

Pn =
1

n!

∫ L

0

dx1 · · ·
∫ L

0

dxn |x1, . . . , xn⟩⟨x1, . . . , xn|,

and this is where the mysterious factor 1/n! arises. For a normalized n-body
state |Ψ⟩,

1 = ⟨Ψ|Ψ⟩ = ⟨Ψ|Pn|Ψ⟩

=
1

n!

∫
dx1 · · · dxn ⟨Ψ|x1, . . . , xn⟩⟨x1, . . . , xn|Ψ⟩

=

∫
dx1 · · · dxn

∣∣∣∣ 1√
n!
⟨x1, . . . , xn|Ψ⟩

∣∣∣∣2 .
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Although conventionally, as many textbooks do, people put 1/
√
n! together with

⟨x1, . . . , xn|Ψ⟩ and call
1√
n!
⟨x1, . . . , xn|Ψ⟩

the normalized many-body wavefunction, the factor 1/
√
n! in fact comes from

overcounting the position basis states in the resolution of identity.
We have finished introducing the basic formulism of many-body physics. A

good way to memorize them is the idea of “second quantization”. Recall that in
the canonical quantization, a key procedure is to replace numbers by operators.
“Second quantization” is in fact better termed “second operatorization”. We are
not quantizing again; the many-body theory is already a quantum theory from
the very beginning. However, there is indeed an analog between single-body
quantum mechanics and many-body quantum mechanics, by replacing numbers
by operators, for example as listed in Table 5.1.

Single-body Many-body

wavefunction ψ(x) = ⟨x|ψ⟩ field operator ψ(x)
probability density ψ∗(x)ψ(x) density operator ψ†(x)ψ(x)
kinetic energy expectation value kinetic energy operator

⟨ψ| p̂
2

2m |ψ⟩ =
∫
dxψ∗(x)

(
− ℏ2

2m
∂2

∂x2

)
ψ(x)

∫
dxψ†(x)

(
− ℏ2

2m
∂2

∂x2

)
ψ(x)

potential energy expectation value potential energy operator
⟨ψ|V (x̂)|ψ⟩ =

∫
dxψ∗(x)V (x)ψ(x)

∫
dxψ†(x)V (x)ψ(x)

Table 5.1: Second quantization correspondence.

It is helpful to compute the expectation values in many-body theory. Again
assuming |Ψ⟩ an n-body state, we compute for example the expectation of den-
sity

⟨Ψ|ψ†(x)ψ(x)|Ψ⟩ = 1

n!

∫
dx1 · · · dxn⟨Ψ|ψ†(x)ψ(x)|x1, . . . , xn⟩⟨x1, . . . , xn|Ψ⟩

=
1

n!

∫
dx1 · · · dxn⟨Ψ|ψ†(x)ψ(x)ψ†(x1) · · ·ψ†(xn)|0⟩⟨x1, . . . , xn|Ψ⟩.

Let’s focus on

ψ(x)ψ†(x1) · · ·ψ†(xn)

=
(
δ(x− x1)± ψ†(x1)ψ(x)

)
ψ†(x2) · · ·ψ†(xn)

=

n∑
j=1

(±)j−1ψ†(x1) · · ·ψ†(xj−1)δ(x− xj)ψ
†(xj+1) · · ·ψ†(xn)

+ (±)nψ†(x1) · · ·ψ†(xn)ψ(x).

Here we are dealing with bosons and fermions on equal footing by keeping the
sign (±). The last term acting on |0⟩ leads to zero. For the jth term, integration

71



with respect to xj sets xj to x, and moving ψ†(x) to the jth position generates
the same sign (±)j−1. Therefore,

⟨Ψ|ψ†(x)ψ(x)|Ψ⟩

=
1

n!

n∑
j=1

∫
dx1 · · · dxj−1dxj+1 · · · dxn|⟨x1, . . . , xj−1, x, xj+1, . . . , xn|Ψ⟩|2.

As a consistent check, we may further integrate with respect to x to get the
total number of particles, which has to be n. Using the normalization of |Ψ⟩ we
indeed find

⟨Ψ|
∫

dxψ†(x)ψ(x)|Ψ⟩

=

n∑
j=1

1

n!

∫
dx1 · · · dxj−1dxdxj+1 · · · dxn|⟨x1, . . . , xj−1, x, xj+1, . . . , xn|Ψ⟩|2.

=

n∑
j=1

1 = n.

Problem 5.5.1. 1. For a bosonic two-body state with fixed momenta p1, p2

|p1, p2⟩ = a†p1a
†
p2 |0⟩,

express the two-body wavefunction

1√
2!
⟨x1, x2|p1, p2⟩

in terms of single particle wavefunction ⟨x|p⟩. Check the normalization
using the single particle orthonormal property∫

dx ⟨q|x⟩⟨x|p⟩ = δpq,

for both p1 ̸= p2 and p1 = p2.

2. Repeat the above for a fermionic two-body state

|p1, p2⟩ = c†p1c
†
p2 |0⟩.

3. For fermionic n-body states

|p1, . . . , pn⟩ := c†p1 · · · c
†
pn |0⟩,

prove its normalization

⟨q1, . . . , qn|p1, . . . , pn⟩ = det(δqipj ),
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by explicitly evaluating the anti-commutation of creation and annihilation
operators, and induction on n. Here (δqipj ) denotes a matrix whose (i, j)
entry is δqipj . You may use the Laplace expansion (inductive expansion)
of determinant

detA =
∑
i

(−1)i+jAij detAĩj ,

where Aij is the (i, j) entry of A and Aĩj is the matrix obtained by deleting
the i-th row and j-th column of A.

4. Based on the above result, evaluate the normalization

⟨q1, . . . , qn|p1, . . . , pn⟩

for bosonic states and

⟨y1, . . . , yn|x1, . . . , xn⟩

for both fermionic and bosonic states.

Hint: The determinant can be written in terms of permutations,

detA = det(Aij) =
∑
σ∈Sn

sgnσ

n∏
i=1

Aiσ(i).

Here, Sn is the set of all invertible maps between

{1, 2, . . . , n} → {1, 2, . . . , n},

namely, Sn is the permutation group of n elements. ∀σ ∈ Sn,

σ(1), σ(2), . . . , σ(n)

is a permutation of 1, 2, . . . , n. Every permutation can be expressed as
the composition of transpositions (a transposition is an exchange of two
elements with all others staying the same). Such expression may not be
unique; however, let the number of transpositions be k, then the parity
sgnσ = (−1)k is an invariant for a given permutation σ. For example,

cpn · · · cp1 = (sgnσ)cpσ(n)
· · · cpσ(1)

.

5. Find the general expression in terms of single particle wavefunction of the
n-body wavefunction

1√
n!
⟨x1, . . . , xn|p1, . . . , pn⟩,

for both bosons and fermions.
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Chapter 6

Perturbation and Scattering
Theory

6.1 Non-degenerate perturbation theory

Consider a Hamiltonian H(λ) that depends on a parameter λ. Suppose at
λ = 0 all the energy eigenstates are not degenerate, thus up to a phase factor,
we have a well-defined orthonormal basis |n(0)⟩, distinguishable by their energy
H(0)|n(0)⟩ = En(0)|n(0)⟩. When λ is varied a little bit, and the energy levels
En(λ) are also not changed a lot, namely |En(λ)−En(0)| ≪ min |Em(0)−En(0)|,
the energy eigenstates will remain non-degenerate, and we should still have a
well-defined orthogonal basis |n(λ)⟩. To fix the phase factor choice at different
λ, also for later convenience, we choose the normalization convention

⟨n(0)|n(λ)⟩ = 1.

Our goal is to solve
H(λ)|n(λ)⟩ = En(λ)|n(λ)⟩.

The idea behind a perturbative solution is as follows. Suppose that we want to
determine an unknown function f(x), which is a combination of several unknown
functions and satisfies

f(x) = 0,

in a small neighborhood x ∈ (−ϵ, ϵ) around 0. It is impossible to solve it at
every point; instead, one expands f(x) to the power series

0 = f(x) = f(0) + f (1)(0)x+
1

2
f (2)(0)x2 +

1

6
f (3)(0)x3 + . . .

and requires the coefficients of xn to be zero, namely f (n)(0) = 0. For x small
enough, a good approximate solution can be obtained from the first several or-
ders of equations. In practice, f(x) may be the sum, product or composition
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of other functions; depending on situations, sometimes it is more convenient to
first expand these functions to proper orders and then compute the sum, prod-
uct or composition of the resulting polynomials. Here for the formal derivation
of the formulas, we instead choose to take derivatives iteratively. Also, the gen-
eralization to multiple parameters is straightforward; we will use the shorthand
notation

∂νf(x
µ) :=

∂f

∂xν
(xµ),

and the convention that a function without explicit variable is to be evaluated
at 0

f := f(xµ)
∣∣∣
xµ=0

, ∂µf :=
∂f

∂xµ
(xν)

∣∣∣
xν=0

.

Now, for a Hamiltonian H(xµ) depending on several parameters xµ, we want to
solve

(En(x
µ)−H(xµ))|n(xµ)⟩ = 0.

The zeroth order equation is

H|n⟩ = En|n⟩.

We assume throughout this section that En ̸= Em for n ̸= m, and |n⟩ form an
orthonormal basis 1 =

∑
n |n⟩⟨n|, ⟨m|n⟩ = δmn.

The first derivative is

(∂νEn(x
µ)− ∂νH(xµ))|n(xµ)⟩+ (En(x

µ)−H(xµ))|∂νn(xµ)⟩ = 0.

The function equation should be kept as it is if higher orders are to be calculated.
Setting xµ = 0 we obtain the first order equation

(∂νEn − ∂νH)|n⟩+ (En −H)|∂νn⟩ = 0. (6.1)

Our normalization convention is

⟨n|n(xµ)⟩ = 1,

which implies ⟨n|∂µ · · · ∂νn⟩ = 0. Thus by projecting (6.1) to ⟨n| we obtain the
first order energy correction

∂νEn = ⟨n|∂νH|n⟩.

By projecting (6.1) to ⟨m|, m ̸= n, we obtain the first order state correction

(En − Em)⟨m|∂νn⟩ = ⟨m|∂νH|n⟩,

namely

|∂νn⟩ =
∑
m ̸=n

|m⟩ ⟨m|∂νH|n⟩
En − Em

.
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The second order equation is

(∂µ∂νEn − ∂µ∂νH)|n⟩+ (En −H)|∂µ∂νn⟩
+ (∂µEn − ∂µH)|∂νn⟩+ (∂νEn − ∂νH)|∂µn⟩ = 0. (6.2)

Again, project (6.2) to ⟨n| and we obtain

∂µ∂νEn − ⟨n|∂µ∂νH|n⟩ − ⟨n|∂µH|∂νn⟩ − ⟨n|∂νH|∂µn⟩ = 0.

Using the result of |∂νn⟩ we obtain the second order energy correction

∂µ∂νEn = ⟨n|∂µ∂νH|n⟩+
∑
m̸=n

⟨n|∂µH|m⟩⟨m|∂νH|n⟩+ ⟨n|∂νH|m⟩⟨m|∂µH|n⟩
En − Em

.

Project (6.2) to ⟨m|, m ̸= n and we obtain

⟨m|∂µ∂νH|n⟩+ (En − Em)⟨m|∂µ∂νn⟩
+ ⟨m|(∂µEn − ∂µH)|∂νn⟩+ ⟨m|(∂νEn − ∂νH)|∂µn⟩ = 0

Substituting ∂µEn and |∂µn⟩ we obtain the second order state correction

|∂µ∂νn⟩ =
∑
m̸=n

|m⟩ ⟨m|∂µ∂νH|n⟩
En − Em

+
∑
m̸=n

|m⟩
∑
k ̸=n

⟨m|∂µH|k⟩⟨k|∂νH|n⟩
(En − Em)(En − Ek)

−
∑
m̸=n

|m⟩ ⟨n|∂µH|n⟩⟨m|∂νH|n⟩
(En − Em)2

+
∑
m̸=n

|m⟩
∑
k ̸=n

⟨m|∂νH|k⟩⟨k|∂µH|n⟩
(En − Em)(En − Ek)

−
∑
m̸=n

|m⟩ ⟨n|∂νH|n⟩⟨m|∂µH|n⟩
(En − Em)2

.

The calculation could proceed further order by order, but we will stop at the
second order; very few practical problems are left which worths the effort and
complexity of higher order perturbative calculations.

Let’s discuss some physical pictures that can be seen from the above results.
The power series of energies and states are

En(x
µ) = En +

∑
ν

∂νEnx
ν +

1

2

∑
µ,ν

∂µ∂νEnx
µxν + . . .

|n(xµ)⟩ = |n⟩+
∑
ν

|∂νn⟩xν +
1

2

∑
µ,ν

|∂µ∂νn⟩xµxν + . . .

The convergence range would depend on the magnitudes of the derivatives,
and thus, according the above results, the magnitude of the “perturbation”
⟨m|∂µH|n⟩ comparing to the magnitude of the “energy gap” En − Em. There-
fore, non-degeneracy is indeed a good assumption. We may define the pertur-
bation strength Λ to be the average of |⟨m|∂µH|n⟩|, then the states |m⟩ with
En −Em ≫ Λ will have negligible contribution to the correction of |n⟩. There-
fore, it is good to think that a perturbation of strength Λ introduces interactions
between, and mix, only states whose energy difference is smaller or comparable
to Λ. As a result, the physics laws at different energy scales can be separated.
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6.2 Effective Hamiltonian

When some of the energy levels are nearly degenerate or even exactly degenerate,
one should expect a bad behavior of the perturbative expansion. Let’s take a
look at the exactly degenerate case. Without loss of generality, assume En are
all the same for 1 ≤ n ≤ D. In this case, the first D basis states are no longer
well defined up to a phase; instead, they are together defined up to a D × D
unitary matrix U . Therefore, we have to modify, for example, the first order
perturbative equation

(∂νEn − ∂νH)U |n⟩+ (En −H)U |∂νn⟩ = 0, n = 1, . . . , D.

Project the above to ⟨m|, m = 1, . . . , D, we get

∂νEn⟨m|U |n⟩ = ⟨m|∂νHU |n⟩,

which is nothing but the eigenvalue problem of ∂νH restricted in the D × D
degenerate subspace. However, if we could easily solve the eigenvalue problem
(exact diagonalization), we would not even attempt the perturbative approach.

Nonetheless, we may try the second best. Suppose we do have the power to
do the exact diagonalization within the degenerate subspace. We are thus satis-
fied if we can block-diagonalize the Hamiltonian with respect to the degenerate
subspaces. In better terms, we are going to derive the effective Hamiltonian in
a subspace. The subspace does not necessarily have (nearly) degenerate energy;
as long as the energy separation between this subspace and the remainder is
large enough, we have a good effective theory.

Consider the Hamiltonian H(xµ) which is diagonal at xµ = 0,

H|n⟩ = En|n⟩.

Assume that |En − Em| ≫ 0 for 1 ≤ n ≤ D and m > D. Define projection
operators

P =

D∑
n=1

|n⟩⟨n|, Q = 1− P =
∑
m>D

|m⟩⟨m|.

Note the properties of the projections

1 = P +Q, P 2 = P, Q2 = Q, PQ = 0, QP = 0.

Define the block diagonal part of an operator A

AbD = PAP +QAQ,

as well the block off-diagonal part

AbO = A−AbD = PAQ+QAP.
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Our goal is to introduce a unitary transformation U(xµ) = eiS(x
µ) such that

U(xµ)H(xµ)U†(xµ) remains block diagonal as we turn on the perturbation, i.e.,
increase xµ. First use the Hadamard formula,

U(xµ)H(xµ)U†(xµ) = e[iS(x
µ),−]H(xµ) =

∑
k

1

k!
[iS(xµ),−]kH(xµ).

We want the block off-diagonal entries to be zero:

0 =

(∑
k

1

k!
[iS(xµ),−]kH(xµ)

)
bO

=

(∑
k

1

k!
[iSbD(x

µ) + iSbO(x
µ),−]kH(xµ)

)
bO

The above is a function equation for the block off-diagonal entries. We have
more variables SbD(x

µ) and SbO(x
µ) than equations. Intuitively, the block-

diagonal part of S is rotating the states in the subspaces. This work should be
left after the effective Hamiltonian is found. Thus, we may set SbD(x

µ) ≡ 0.
The equation is simplified with block off-diagonal S(xµ) = SbO(x

µ) but still
solvable. It is easy to check that the product of two block off-diagonal operators
is block diagonal, and the product of a block diagonal operator and a block
off-diagonal operator is block off-diagonal. Therefore,

0 =

(∑
k

1

k!
[iS(xµ),−]kH(xµ)

)
bO

=
∑
k

1

2k!
[iSbO(x

µ),−]2kHbO(x
µ)

+
∑
k

1

(2k + 1)!
[iSbO(x

µ),−]2k+1HbD(x
µ).

Or more compactly

cos[SbO(x
µ),−]HbO(x

µ) + i sin[SbO(x
µ),−]HbD(x

µ) = 0,

HbO(x
µ) + i tan[S(xµ),−]HbD(x

µ) = 0.

We will work out the first and second orders. Note that H is diagonal, thus
HbD = H, HbO = 0. Setting xµ = 0 in the first derivative leads to

∂νHbO + i[∂νS,H] = 0.

Check the matrix elements

⟨m|∂νHbO|n⟩+ i(En − Em)⟨m|∂νS|n⟩ = 0.
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Thus,

i∂νS =
∑
m,n

|m⟩ ⟨m|∂νHbO|n⟩
Em − En

⟨n|.

The block off-diagonal operator automatically enforces the condition that m,n
belongs to different subspaces.

The second order equation is

∂µ∂νHbO + i[∂µ∂νS,H] + i[∂µS, ∂νHbD] + i[∂νS, ∂µHbD] = 0.

Again, check the matrix elements

⟨m|∂µ∂νHbO|n⟩+ i(En − Em)⟨m|∂µ∂νS|n⟩
= −i⟨m|[∂µS, ∂νHbD]|n⟩ − i⟨m|[∂νS, ∂µHbD]|n⟩

=
∑
k

⟨m|∂µHbO|k⟩⟨k|∂νHbD|n⟩
Ek − Em

− ⟨m|∂µHbD|k⟩⟨k|∂νHbO|n⟩
En − Ek

+
∑
k

⟨m|∂νHbO|k⟩⟨k|∂µHbD|n⟩
Ek − Em

− ⟨m|∂νHbD|k⟩⟨k|∂µHbO|n⟩
En − Ek

,

from which ∂µ∂νS can be determined. The expression is becoming too long;
also, the contribution of ∂µ∂νS to the Hamiltonian up to the second order is
through [∂µ∂νS,H] which is block off-diagonal, so we do not need it for the
second order effective Hamiltonian. ∂µ∂νS does contribute to the the state
correction, though.

Let’s conclude this section by writing down the effective Hamiltonian to the
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second order.

S(xµ) =
∑
µ

xµ∂µS +
1

2

∑
µν

xµxν∂µ∂νS + . . . ,

Heff(x
µ) := P e[iS(x

µ),−]H(xµ)P

= PHP +
∑
µ

xµP∂µHP +
1

2

∑
µν

xµxνP∂µ∂νHP

+
∑
µ

xµP [i∂µS,H]P

+
∑
µν

xµxνP [i∂µS, ∂νH]P +
1

2

∑
µν

xµxνP [i∂µ∂νS,H]P

+
1

2

∑
µν

xµxνP [i∂µS, [i∂νS,H]]P + . . .

= PHP +
∑
µ

xµP∂µHP +
1

2

∑
µν

xµxνP∂µ∂νHP

+
1

2

∑
µν

xµxνP [i∂µS, ∂νH]P + . . .

= PHP +
∑
µ

xµP∂µHP +
1

2

∑
µν

xµxνP∂µ∂νHP

+
1

2

∑
µν

1≤m≤D
1≤n≤D
k>D

xµxν |m⟩
(
⟨m|∂µH|k⟩⟨k|∂νH|n⟩

Em − Ek
+

⟨m|∂νH|k⟩⟨k|∂µH|n⟩
En − Ek

)
⟨n|

+ . . . .

You may check that when D = 1, the one-dimensional effective Hamiltonian
agrees with our previous results on non-degenerate perturbation theory.

6.3 Scattering theory

In this section we introduce some basic formulism of quantum scattering theory.
Scattering theory is extremely useful in practice: we get to know a new object
by looking at how other things are scattered by this object; indeed, our eyes
and ears are just detectors working this way.

In the non-relativistic quantum setting, the scatterer we want to study is
represented by a potential V , usually with finite support (non-zero in a finite
range). A beam of known particles are thrown to the potential, and we consider
a total Hamiltonian

H + V, H =
p̂2

2m
.
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A practical scattering process is dynamical, and involves wave packets of par-
ticles which are finite in both space and time. However, due to the linearity of
quantum mechanics, it is much more clear to study the basis eigenstates, which
are steady. Consider that we launch an infinite plane wave to the scatterer, and
allow a long enough evolution until the state becomes steady, i.e., an eigenstate.
For this to happen, it is necessary that V is independent of time, or in other
words, energy is preserved and the scattering is elastic. The states with a dif-
ferent energy than the incoming plane wave would interfere destructively; some
other perturbations could also help these “non-resonant” states to dissipate.
The resulting steady state should be an eigenstate with the same energy as the
incoming plane wave. Mathematically, we want to find the eigenstate |ψ⟩

(H + V )|ψ⟩ = E|ψ⟩,

with the “boundary condition” that as V → 0, |ψ⟩ approaches the plane wave
state |ψ⟩ → |p⟩, E = p2/2m. To fit such “boundary condition”, we may rewrite

V |ψ⟩ = (E −H)|ψ⟩.

We know the “general solutions” to the right hand side

0 = (E −H)|ψ⟩,

which are just the plane wave eigenstates |p⟩, and we need some “special solu-
tion” to produce the left hand side.

It will be nice if we can somehow “invert” the operator (E −H). Consider
a more general form of linear equation

Ax = y.

If there is a left inverse L of A, (LA = 1, but not necessarily AL = 1), then the
solution must be unique if exists, since by multiplying L we have LAx = x = Ly.
However, it is possible that x = Ly is not even a solution. On the other hand,
if there is a right inverse G of A, (AG = 1 but not necessarily GA = 1), we
do have a special solution x = Gy which satisfies Ax = AGy = y. For a linear
operator A that we know many general solutions to Ax = 0 exist, which can be
combined with a special solution to Ax = y to produce other solutions, clearly
we can at most count on the right inverse. This is the idea behind the Green’s
function method.

A Green’s function is just a right inverse.

The right inverse is not unique in general, and may account for different initial
or boundary conditions. The right inverse G of E −H, in the position basis, is
the Green’s function G(x, y) = ⟨x|G|y⟩ satisfying

δ(x− y) = ⟨x|y⟩ = ⟨x|(E −H)G|y⟩ = (E +
ℏ2

2m

∂2

∂x2
)G(x, y),
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Similar to the delta function, the Green’s function should also be considered as
a generalized function, i.e., defined by its action via the integral against test
wavefunctions. This point of view also explains why a singular operator E −H
can be inverted: the states with E−H being zero occupies only a zero measure
comparing to all the states (two points comparing to a line, a circle comparing
to a plane, a sphere comparing to a bulk, depending on dimensions). Surely for
the majority of the states we just take 1

E−H ; the tricky thing is how to deal
with the singular parts.

Again, similar to how one can approximate the delta function, the Green’s
function can be approximated by some sequence of functions with the limit
taking outside the integral. A good prescription here is to make the energy
slightly complex so that it is no longer singular,

G± :=
1

E ± iϵ−H
.

Here, ϵ > 0 is a small positive number. The sign will affect the boundary
conditions as we will see later. The limit ϵ→ 0 is to be taken at the end of the
calculation. We arrive at the Lippmann-Schwinger equation

|ψ⟩± = |p⟩+G±V |ψ⟩± = |p⟩+ 1

E ± iϵ−H
V |ψ⟩±.

In the Lippmann-Schwinger equation we like to set E = p2/2m. Since the
direction of p matters as the boundary condition in a scattering problem, for
convenience we introduce the the positive wavenumber k > 0, ℏk = |p| =

√
2mE

and separate the sign of p = ±ℏk out.
Let’s work out the one-dimensional Green’s function explicitly

⟨x|G+|y⟩ =
∫

dq ⟨x|q⟩⟨q| 1

E + iϵ−H
|y⟩

=
m

πℏ

∫
dq

e
i
ℏ q(x−y)

ℏ2k2 + iϵ− q2
.

For a simpler notation, ϵ multiplied by a positive constant is still denoted by ϵ;
it is to be taken to zero in the end anyway. The integral is computed by picking
a proper contour in the complex plane of q. For x − y > 0, we should pick a
half circle in the upper half plane to ensure convergence. The integrand has two
poles at

q = ±
√
ℏ2k2 + iϵ ≈ ±(ℏk + iϵ),

The pole with a positive sign before k, q = ℏk+ iϵ is enclosed in the upper half

plane contour. The contour is anti-clockwise. The residue is − eik(x−y)−ϵ

2ℏk+iϵ which
can be seen from the expansion

e
i
ℏ q(x−y)

ℏ2k2 + iϵ− q2
=

e
i
ℏ q(x−y)

2ℏk + iϵ

(
1

q + ℏk + iϵ
− 1

q − ℏk − iϵ

)
,
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therefore, ∫
dq

e
i
ℏ q(x−y)

ℏ2k2 + iϵ− q2
= −2πi

eik(x−y)−ϵ

2ℏk + iϵ
→ −πi e

ik(x−y)

ℏk
,

for x− y > 0. Similarly we can compute the case x− y < 0, where the contour
should be the lower half plane, clockwise. The sign from the orientation of the
contour cancels the sign difference between the residue of the two poles, thus
only the sign difference in the exponent remains,∫

dq
e

i
ℏ q(x−y)

ℏ2k2 + iϵ− q2
= −2πi

e−ik(x−y)−ϵ

2ℏk + iϵ
→ −πi e

−ik(x−y)

ℏk
,

for x−y < 0. For G−, the sign before k for the two poles are switched comparing
to G+. Concluding all cases,

⟨x|G±|y⟩ =
2m

ℏ2
e±ik|x−y|

±2ik
.

Problem 6.3.1. 1. As a consistent check of the above solution, use the step
function θ(x) with

∂θ(x)

∂x
= δ(x),

∂|x|
∂x

= θ(x)− θ(−x),

and compute the second derivative of e±ik|x|.

2. Think about why

⟨x|G±(E −H)|y⟩ = (E +
ℏ2

2m

∂2

∂y2
)⟨x|G±|y⟩ = δ(x− y),

but G± is not a left inverse to E −H.

We now have

⟨x|ψ⟩± = ⟨x|p⟩+
∫

dy
m

iℏ2
e±ik|x−y|

±k
⟨y|V |ψ⟩±.

Instead of solving this integral equation, we are more interested in the asymp-
totic behavior as x→ ∞, as in practice we usually measure the scattered wave
at far away from the scatterer. At x→ +∞, |x− y| = x− y,

⟨x|ψ⟩± = ⟨x|p⟩+ e±ikx

∫
dy

m

iℏ2
e∓iky

±k
⟨y|V |ψ⟩±.

At x→ −∞, |x− y| = −x+ y,

⟨x|ψ⟩± = ⟨x|p⟩+ e∓ikx

∫
dy

m

iℏ2
e±iky

±k
⟨y|V |ψ⟩±.
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In fact x does not need to be too large; as long as x is outside the support of
V , the above asymptotic behaviors are exact. We see that the positive solution
describes plane waves going away from the scatterer while the negative solution
describes plane waves going to the scatterer, which is the time-reversal of the
positive solution. We thus focus on the positive solution. Without loss of
generality, let’s take p = ℏk, i.e., incoming plane wave from the left. One can
see that

⟨x|ψ⟩L ∼

{
a eikx, x→ +∞,

eikx + b e−ikx, x→ −∞.

Where a, b are coefficients depending on both k and the scatter potential V .
Physically, a is the transmission amplitude and b is the reflection amplitude.
We have the relation

1 = |a|2 + |b|2,

as the result of probability conservation. To prove it, we may use the current
corresponding to probability conservation. For a more general application, let’s
consider the problem in arbitrary dimensions. Given a time dependant state
|Ψ(t)⟩ = U(t)|Ψ⟩ satisfying the Schrodinger equation,

iℏ
∂

∂t
|Ψ(t)⟩ = H|Ψ(t)⟩ =

(
p̂2

2m
+ V

)
|Ψ(t)⟩.

In the position basis

iℏ
∂

∂t
⟨r|Ψ(t)⟩ =

(
−ℏ2∇2

2m
+ V (r)

)
⟨r|Ψ(t)⟩.

The total probability is conserved since the evolution U(t) is unitary

⟨Ψ(t)|Ψ(t)⟩ = ⟨Ψ|Ψ⟩.

Now consider a closed manifold M with boundary ∂M . The probability of
finding the particle in M at time t is∫

M

dr ⟨Ψ(t)|r⟩⟨r|Ψ(t)⟩.

Use the shorthand notation Ψ := ⟨r|Ψ(t)⟩, and calculate the time derivative
while substituting in the Schrodinger equation

− ∂

∂t

∫
M

drΨ∗Ψ =

∫
M

drΨ∗ i

ℏ

(
−ℏ2∇2

2m
+ V (r)

)
Ψ−Ψ

i

ℏ

(
−ℏ2∇2

2m
+ V (r)

)
Ψ∗

=

∫
M

dr
−iℏ
2m

(
Ψ∗∇2Ψ−Ψ∇2Ψ∗)

=

∫
M

dr
−iℏ
2m

∇ · (Ψ∗∇Ψ−Ψ∇Ψ∗)

=

∫
∂M

dS · −iℏ
2m

(Ψ∗∇Ψ−Ψ∇Ψ∗)
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Thus we can associate the probability current to Ψ,

jΨ(r, t) =
−iℏ
2m

(
⟨Ψ(t)|r⟩∇⟨r|Ψ(t)⟩ − ⟨r|Ψ(t)⟩∇⟨Ψ(t)|r⟩

)
.

In particular, for a steady eigenstate,∫
∂M

dS · j = 0,

which means in one dimension that j is a constant with respect to position.
Then, for the asymptotic wavefunctions, at x→ +∞,

⟨x|ψ⟩L ∼ a eikx,

we have

j(x) ∼ −iℏ
2m

(
a∗e−ikx ∂

∂x
aeikx − aeikx

∂

∂x
a∗e−ikx

)
=

ℏk
m

|a|2.

At x→ −∞,
⟨x|ψ⟩L ∼ eikx + b e−ikx,

we have

j(x) ∼ −iℏ
2m

(
(e−ikx + b∗ eikx)

∂

∂x
(eikx + b e−ikx)

−(eikx + b e−ikx)
∂

∂x
(e−ikx + b∗ eikx)

)
=

ℏk
m

(1− |b|2).

Therefore, we indeed obtain 1−|b|2 = |a|2. For the case p = −ℏk, i.e., incoming
plane from the right instead of the left, we may exploit the time-reversal sym-
metry of the Hamiltonian, which means that ⟨x|ψ⟩∗L is also a solution to the
Schrodinger equation. We can then combine ⟨x|ψ⟩∗L with ⟨x|ψ⟩L to obtain the
correct asymptotic form, which turns out to be

⟨x|ψ⟩R =
1

a∗

(
⟨x|ψ⟩∗L − b∗⟨x|ψ⟩L

)
=

{
e−ikx − b∗ a

a∗ e
ikx, x→ +∞,

1−|b|2
a∗ e−ikx = a e−ikx, x→ −∞.

We can see that the transmission amplitude a remains the same, while the
reflection amplitude b∗ a

a∗ differs from b by a phase factor.

The scattering theory in two dimensions is less straightforward. The Green’s
function is given by a Hankel function instead of some combinations of elemen-
tary functions as in one and three dimensions.

Problem 6.3.2. Compute

G±(r, r
′) = ⟨r| 1

E ± iϵ−H
|r′⟩,

85



in two and three dimensions explicitly by inserting the momentum resolution of
identity, transforming into the polar coordinates, and then using the method of
contour integral. In two dimensions, the Mehler’s Bessel function formula can
be useful

J0(x) =
2

π

∫ ∞

0

sin(x cosh t)dt, Y0(x) = − 2

π

∫ ∞

0

cos(x cosh t)dt.

Also ∫ 2π

0

eix cos θdθ = 2πJ0(x),

and the Hankel functions are

H+
α (x) = Jα(x) + iYα(x), H−

α (x) = Jα(x)− iYα(x).

Up to a normalization factor, G± is given by H±
0 .

We then discuss some important notions in the scattering theory in three
dimensions. Firstly, the Green’s function in three dimensions is

G±(r, r
′) = ⟨r| 1

E ± iϵ−H
|r′⟩ = −2m

ℏ2
e±ik|r−r′|

4π|r − r′|
,

where ℏk =
√
2mE.

Again, we are interested in the positive solution at far away from the scat-
terer,

⟨r|ψ⟩ = ⟨r|p⟩+
∫

dr′G+(r, r
′)⟨r′|V |ψ⟩

= ⟨r|p⟩ − 2m

4πℏ2

∫
dr′

eik|r−r′|

|r − r′|
⟨r′|V |ψ⟩,

where p = ℏk, k = |k|. At r := |r| → ∞, we have

|r − r′| =
√

(r − r′) · (r − r′) ∼ r − r

r
· r′.

Denote the unit vector by nr := r/r, then

eik|r−r′| ∼ eikre−iknr·r′
.

Further denoting the radial wave vector by kr := knr, the asymptotic wave-
function is

⟨r|ψ⟩ ∼ ⟨r|p⟩ − eikr

r

2m

4πℏ2

∫
dr′ e−ikr·r′

⟨r′|V |ψ⟩

∼ eik·r + f(kr,k)
eikr

r
.
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Here, the physical meaning of f(kr,k) is the amplitude for particles to be scat-
tered into unit solid angle along the direction nr, similar to the transmission
and reflection amplitude in the one-dimensional case. Moreover, |f(kr,k)|2 can
be identified as the differential cross section.

To explain the notion of cross section, consider that a plane wave of particles
are thrown to a scatterer. When detecting from far away on the other side, since
the density of the scattered particles decays with 1/r2, it is expected to see a
plane wave with a “hole” around the scatterer. The area of the “hole” reflects the
power of the scatterer and the total cross section σ is just defined as the area of
such “hole”. Then, pick a small area dσ in this “hole”. Classically one may track
the particle trajectories to find to which direction nr the incident particles in
dσ are scattered. Quantum mechanically, it is also possible to establish a similar
picture for a steady state by looking at the probability current (or particle flux)
vector j. Suppose that the incident flux is ji and the scattering flux at r along
the radial direction is jr. Then, jidσ is incident particle number per unit time;
jrr

2dΩ is the scattered particle number per unit time, where dΩ is the solid
angle. The two quantities should be equal. The differential cross section is
defined as dσ/dΩ, namely, the area scattered away into unit solid angle.

Since we are considering an elastic scattering process, the incident wave and
scattered wave share the same magnitude of wave vector, or the same “velocity”.
We can thus even avoid the calculation of flux and simply check the density.
It is enough to consider the relative density. With the density of the incident
wave set to 1, the relative density of the scattered wave at r is |f(kr,k)/r|2.
Therefore,

1 · dσ = |f(kr,k)/r|2r2dΩ .

Indeed we have
dσ

dΩ
= |f(kr,k)|2.

Note that the total density or flux definitely involves the interference between
the incident wave and the scattered wave. f(kr,k) is only an indirect observable
that can be extracted by proper manipulation on the measurement results of
density or flux.

Problem 6.3.3. To get more intuition about three dimensional scattering,
compute the probability current j(r) associated to the wavefunction

⟨r|ψ⟩ = eik·r + fk(θ, ϕ)
eikr

r
,

where we take the convention that k = knz points to the +z direction, and
f(kr,k) = f(knr, knz) = fk(nr) = fk(θ, ϕ).

1. Show that the gradient of an arbitrary function F (r, θ, ϕ) in three dimen-
sional polar coordinates reads

∇F =
∂F

∂r
nr +

1

r

∂F

∂θ
nθ +

1

r sin θ

∂F

∂ϕ
nϕ,
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where nr,nθ,nϕ denotes the unit vectors pointing to the directions along
which r, θ, ϕ increase, respectively. Also the current j(r) may be repre-
sented more compactly by taking the imaginary part ℑ

j(r) =
ℏ
m
ℑ (⟨ψ|r⟩∇⟨r|ψ⟩) .

2. Compute

∇⟨r|ψ⟩ = ikeik·r + fk

(
ik
eikr

r
− eikr

r2

)
nr

+
eikr

r2

(
∂fk
∂θ

nθ +
1

sin θ

∂fk
∂ϕ

nϕ

)
.

3. Show that the current may be separated into three parts: the incident
part

jincident =
ℏ
m
k,

the interfering part
jinterfering ∼ eikr(1−cos θ),

and the scattered part

jscattered =
ℏk
m

|fk|2

r2
nr +O

(
1

r3

)
nθ +O

(
1

r3

)
nϕ.

Try to explain why for large enough r, we can think

j ≈ ℏk
m

(
nz +

|fk|2

r2
nr

)
.

It worths mentioning the special case when V (r) = V (r) is rotationally

invariant. Clearly the free Hamiltonian H = p2

2m is also rotationally invariant.
It is then great to solve the problem in the (orbital) angular momentum basis.
When dealing with an incident plane wave, this approach is referred to as the
partial wave method. As some complicated mathematics regarding spherical
functions are involved, we will not elaborate on the details. However, due to the
conservation of angular momentum, there is an important result by considering
an incoming wave and an outgoing wave with the same angular momentum.
The asymptotic wavefunction is

⟨r|ψ⟩ ∼
(e−ikr

r
+ fml

eikr

r

)
Y ml (θ, ϕ).

Conservation of probability tells us that fml has to be a phase factor |fml | = 1,
known as the phase shift.
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Problem 6.3.4. Verify |fml | = 1 for the state

⟨r|ψ⟩ =
(e−ikr

r
+ fml

eikr

r

)
Y ml (θ, ϕ),

by considering the total current going through a sphere S2∫
S2

j · dS = 0.

89


	Fundamentals
	What is quantum mechanics about, and not about
	Review: Linear algebra
	Postulates of quantum mechanics
	Density operator
	Commutator and uncertainty relation
	Position and momentum

	Quantum Dynamics
	Evolution operator
	Dynamical pictures
	Schrodinger picture, the lab frame as reference
	Heisenberg picture, the center of mass frame as reference
	Interaction picture

	Path integral

	Harmonic Oscillator
	Operator method
	Path integral method

	Symmetry and Conserved Quantities
	Space-time translation, energy and momentum
	Rotation and angular momentum
	Group and representation

	Many-body Theory
	Composite system and tensor product
	An introductory many-body example
	Identical particle
	Field operator
	Many-body wavefunction

	Perturbation and Scattering Theory
	Non-degenerate perturbation theory
	Effective Hamiltonian
	Scattering theory


